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Abstract—Multi-Spectral Fluorescent Lifetime Imaging Mi-
croscopy (m-FLIM) is a technique that aims to perform non-
invasive in situ clinical diagnosis of several diseases. It measures
the endogenous fluorescence of molecules, recording their life-
time decay in different wavelength bands. This signal is a mixed
response of multiple fluorescent components present in a tissue
sample. The goal is to decompose the mixture and estimate
the proportional contributions of its constituents. Estimation
of such quantitative description will help to characterize the
molecular constitution of a given sample.
This paper presents a new method to estimate the abundances
of multiple components present in a mixture measured using
m-FLIM data. It provides a closed-form solution under the fully
constrained linear unmixing model and assuming the number
of components as well as their ideal lifetime decays are known.
Its performance is tested using synthetic samples with three
components, where performance can be measured accurately
and the percentage error is around 6%. The algorithm was
also validated performing unmixing of ex vivo data samples
from atherosclerotic human tissue containing collagen, elastin
and low-density lipoproteins. These experiments were validated
against ground-truth maps, which only give a quantitative
description, and the estimated accuracy was around 88%.

I. INTRODUCTION

Devices capable of non-invasive in vivo clinical diagnosis

are of great interest in biomedical research, mainly to reduce

the need for biopsies and other invasive techniques that are

time consuming and potentially harmful for the patients.

Fluorescence microscopy imaging is widely employed for

chemometrical studies and a recent trend in the area is

precisely to take advantage of endogenous fluorophores,

molecules with a natural fluorescence emission, present in

living systems.

The problem is how to identify each component and

quantify their abundance given the mixed measurement. We

assume that lifetime measurements correspond to a linear

mixture, this case is known in literature as linear unmixing

[1]. The main difficulty is that multiple solutions exist and

usually restrictions are imposed in order to find a best match.

Linear Unmixing has been approached using different tech-

niques like optimization and pattern recognition methods.

Several algorithms are restricted to solve mixtures of a

limited number of components [2]. Only a few proposals

deal with mixtures of multiple fluorophores [3], [4], [5].

Most of these methods are not tolerant to highly overlapping
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spectra components like those emitted by autofluorescence

molecules.

We make use of multi-spectral Fluorescence Lifetime

Imaging Microscopy (m-FLIM) data, also known as hyper-

spectral FLIM [6]. It allows us to better differentiate over-

lapping spectra like endogenous fluorescent molecules, thus

avoiding the use of invasive markers. The m-FLIM data

measures the lifetime, the decay rate of the fluorescent

luminous response, at each pixel of the sampled area in

multiple wavelength bands, see Figure 1. However, accurate

and quantitative characterization of in-vivo tissue using m-

FLIM hast not been demonstrated yet [7].
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Fig. 1. Multi-spectral Fluorescence Lifetime Imaging Microscopy Data

The Linear Mixture model [1], [8] is employed to state

the contribution of each fluorophore in a mixture yλ(k),
on every wavelength λ = 1, · · · , P over a window of M

measurements as

yλ(k) =

N
∑

n=1

αnpn,λ(k) k = 1, . . . ,M (1)

subject to

αn ≥ 0 ∀n = 1, . . . , N (2)

N
∑

n=1

αn = 1. (3)
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where k and n denotes the time and component index

respectively. The lifetime decay profiles are described by

pn,λ(k) and αn stands for their proportional contributions

we want to estimate.

II. CONSTRAINED OPTIMIZATION FOR SPECTRAL

UNMIXING WITH A CLOSED FORM SOLUTION

We propose a new closed-form solution for (1) under the

sum-to-one (3) and non-negativity (2) constraints. It can be

estimated using the ideal lifetime decay profiles pn,λ(k) and
assuming the number of components is known. To perform

multi-spectral Fluorescence Lifetime Imaging Microscopy

(m-FLIM) data unmixing the following cost function is

employed

min
α1,...,αN

P
∑

λ=1

‖yλ − ŷλ‖
2

2
(4)

such that
N
∑

n=1

αn = 1 αn ≥ 0 ∀n (5)

where ‖ · ‖2 denotes the Euclidean norm, the estimated re-

sponse at wavelength λ is given by ŷλ =
∑N

n=1
αnpn,λ, for

and λ = 1, . . . , P . The vector pn,λ = [pn,λ(1) . . . pn,λ(M)]
contains the lifetime decay samples.

In fact, the solution to (4) can be briefly described as

a two step procedure. First the approximation problem is

solved incorporating the equality constraint
∑

n αn = 1
using a Lagrange multiplier. Second, if the resulting

optimal solution has negative entries those elements are

set to zero by introducing new equality constraints and the

optimal solution is recalculated according to the Karush-

Kuhn-Tucker conditions [9]. The proposed methodology is

detailed in Algorithm 1.

The solution obtained is still optimal considering that there

is random and uncorrelated uncertainty in the estimation of

the measurements vector yλ at each wavelength λ, i.e.

ŷλ =

N
∑

n=1

αnpn,λ + ξλ (9)

where ξλ ∈ R
N is a noise vector of uncorrelated el-

ements with zero-mean (E{ξλ} = 0) and finite variance
(

E{ξTλ ξλ} < ∞
)

.

III. EVALUATION

The proposed algorithm was tested using two sets of

experiments. First, the performance was evaluated using

synthetic m-FLIM data stacks, which allows to accurately

measure the error on the estimation of the abundances.

Later, the algorithm was validated using ex-vivo m-FLIM

samples of atherosclerotic human tissue from [11], which

were measured in three different excitation wavelength bands

(i.e. P = 3), namely 390±40 nm, 450±40 nm, and 550±88
nm.

Algorithm 1 Fully Constrained Method for Estimation of

Abundances under the Linear Unmixing Model

1) Given the m-FLIM data measurements yλ and the
component profiles pn,λ n = 1, . . . , N the following
elements are calculated:

A =
P
∑

λ=1







〈p1,λ,p1,λ〉 . . . 〈p1,λ,pN,λ〉
...

. . .
...

〈pN,λ,p1,λ〉 . . . 〈pN,λ,pN,λ〉







b = −2

P
∑

λ=1

[〈yλ,p1,λ〉 . . . 〈yλ,pN,λ〉]
T

e =
∑P

λ=1
〈yλ,yλ〉

c = [1 . . . 1]T
1×N

d = 1

where 〈·, ·〉 denotes the inner product between vectors.

The Gram matrix A [10] is assumed non-singular,

i.e. the set of profiles (pλ,1, . . . ,pλ,N ) are linearly

independent for each wavelength.

2) The solution to the optimal approximation problem

subject to constraint (3) is

x = −
1

2
A

−1
b+A

−1
c

[

1

2
c
T
A

−1
b+ d

cTA−1c

]

3) Define the set Ω = {1, . . . , N}, and compute the set

of active inequality constraints Ix ⊂ Ω such that

Ix = {i ∈ Ω|xi < 0} . (6)

Let L = card(Ix) define the total number of negative

terms in the first step of the optimization process. If

Ix = ∅, then x satisfies all the inequality constraints

and x is the solution.

4) If Ix 6= ∅, the equality constraints are augmented by

Hix = 0 ∀i ∈ Ix (7)

where Hi = [0 . . . 0 1 0 . . . 0] ∈ R
1×N is a row vector

of zeros with one in the i-th position. The Lagrange

multipliers related to the new equality constraints are

δi > 0 ∀i ∈ Ix

In this way, the next optimality sufficient conditions

[9], [10] define a set of N + 1 + L linear equations

(non-singular by construction) and the same number

of unknowns (x, µ, δ1, . . . , δL) to solve

2Ax+ b+ µc+
∑

i∈Ix

δiH
T
i = 0

cTx = d

Hix = 0 ∀i ∈ Ix (8)

where µ > 0 is the Lagrange multiplier associated to

the constraint in (3).

5) If Ix = Ω there is no feasible solution for the

optimization problem.
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Fig. 2. Simulated and estimated abundances from a synthetic m-FLIM
data sample which depicts three fluorophores without co-localized high
concentrations.

Synthetic data

Different synthetic m-FLIM data stacks were generated

using a parametric model [12] to synthesize lifetime decay

profiles. The experiments simulated mixtures of three auto-

fluorescence molecules: collagen, elastin, and low density

lipoproteins (LDL), i.e. N = 3. Normal noise with mean 0

and standard deviation σ = 0.02 was added to the parameters

of the synthetic profiles in order to simulate uncertain data.

The spatial distributions for molecule concentrations were

generated using normal distributions, the pattern simulated

without noise can be seen in Figure 2, along with the abun-

dances estimated by the proposed method. The algorithm

estimated the component percentages by using the profiles

of each component in laboratory samples in concentration of

100%. Please note that the real profiles could be different

from the ideal ones due to the protein arrangement in

tissue. These profiles pn,λ are composed of samples with

dimensions 60× 60× 510.

The error on the predictions was measured using the

relative error (RE) given by

RE =
‖x̂− x‖

2

‖x‖
2

(10)

where x̂ is the estimation of the exact fractional concentra-

tions vector x. A boxplot of the estimated RE is shown in

Figure 3, where the median error was 0.062 (6%)

Ex vivo data

To validate our algorithm on ex-vivo data, we used the

methodology proposed in [13], where Ground-Truth maps

are obtained using a multi-class Fisher’s linear discriminant

analysis applied to 6 fluorescence features (intensity and

average lifetime per wavelength band). Every pixel of the

Ground-Truth maps are classified as either “High-Collagen”

(Green), “High-Elastin”(Blue) or “High-LDL”(Red). This

method provides a good qualitative description of the sam-

ple’s composition and it has already been validated against

histology images [13]. To test the performance of the unmix-

ing algorithm, the estimated concentrations at each position
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Fig. 3. Boxplot for the relative error estimated on the synthetic m-FLIM
sample from Figure 2. The estimated median error was 6%.

where classified according to the component with the highest

value. The classification is simply made as

Class = arg max
i=1,2,3

αi. (11)

where the indexes i = 1, 2, 3 represent Collagen, Elastin and

LDL, respectively.

IV. RESULTS

The proposed method estimates the abundances of the

constituents in mixture samples of m-FLIM data. The per-

formance of the algorithm has been tested using synthetic

data. However validation with living tissue is needed. The

concentration maps obtained from one ex-vivo sample is

shown in Figure 4, here the localized abundances of each

component are displayed. The Ground-truth map employed

for validation is shown in Figure 5, this map was obtained

following the methodology in [13]. The data set depicts a

region with high concentrations of LDL and elastin, as can

be confirmed with the concentration maps in Figure 4. The

percentage of successful classifications was calculated for

each possible case using (11), and represented by a confusion

matrix in Table I. The numbers in the diagonal represent the

percentage of each true positive case. Around 98% of the

pixels with high concentrations of Collagen were correctly

classified, while 87% of correct classification was made for

LDL rich zones. The misclassification of elastin rich zones

was low, less than 40%, however these pixels where only

detected in the borders by our method, Figure 4, as well as

in the Ground-truth map as blue regions in Figure 5. The

later are qualitative results, and not exactly accurate. They

only provide a good reference since it is impractical to know

the real co-localized abundances from living tissue. The

total percentage of misclassified pixels (100× misclassified

pixels/total number of pixels by m-FLIM stack) is 12.08%

(435 out of 3600).

V. CONCLUSIONS

In this study, we addressed the fully constrained Linear

Unmixing problem. The method assumes that the ideal

profiles of the components are known. The performance was

tested solving noisy synthetic samples, and the proposed
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Fig. 4. Estimated Abundances for Ex-Vivo Data Set.

TABLE I

CONFUSION MATRIX FOR EX-VIVO DATA SET

Real \ Predicted High Elastin High Collagen High LDL

High Elastin 0.39815 0.21296 0.38889

High Collagen 0 0.98317 0.01683

High LDL 0 0.12882 0.87118

method was validated by ground-truth maps from ex-vivo

samples. Simulation and experimental results suggest that the

proposed methodology provides a good quantitative descrip-

tion of fluorescent components found naturally within tissue.

The relative error measurements estimated a percentage error

around 6% when performing unmixing on noisy m-FLIM

data.

The closed-form solution implies a low computational

cost; the abundances of 60×60×510 m-FLIM data stacks of

three components are estimated in less than 2 seconds. Fur-

thermore, the proposed methodology could solve mixtures

of multiple fluorophores, however it was only validated in

experiments using three components.

There exist plenty of approaches based on constrained op-

timization to solve spectral unmixing/end-member extraction

problems in similar applications, like [14] and [15]. However,

to the author’s knowledge, there are no similar proposals with

a closed-form solution subject to constraints (2) and (3).

The algorithm still needs further validation, and its per-

formance should be evaluated against other methodologies

in the state of the art. Since the method is based on a

linear mixture model, it could be applied to several different

applications, from chemometric studies to remote sensing

procedures. An extension is being developed to perform

blind end-member extraction from m-FLIM samples, i.e.

solving the linear unmixing model without the need for prior

information and estimating the lifetime decay profiles of each

component, as well as, the abundances.
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Fig. 5. Ground-Truth map for Ex-Vivo Sample. The sample depicts regions
of high concentrations of LDL in red, Collagen and Elastin rich zones are
represented by green and blue pixels, respectively.
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