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Abstract— The development of automated methods of elec-
troencephalogram (EEG) seizure detection is an important
problem in neonatology. This paper proposes improvements
to a previously described method of seizure detection based
on atomic decomposition by developing a new time-frequency
(TF) dictionary that is highly coherent with the newborn EEG
seizure. We compare the performance of the proposed dictio-
nary on neonatal EEG signals with that achieved using Gabor,
Fourier and wavelet dictionaries. Through the analysis of real
newborn EEG data, we show first, that dictionary selection can
influence the seizure detection accuracy and second, that the
proposed dictionary outperforms other dictionaries by at least
10% in seizure detection accuracy and 5% improvement in the
area under the Receiver Operator Characteristic curve.

I. INTRODUCTION

The electroencephalogram (EEG) is a useful tool for the

passive measurement of cortical electrical activity. Seizure

detection is the primary use of the EEG in the neonatal

intensive care unit (NICU). In the newborn, seizure events

are of great concern for the neurophysiologists due to the

possible cause of brain disorder [1]. Visual interpretation

is time-consuming and not all NICUs have 24hr access to

experienced annotators.

The EEG signal can be divided into non-seizure and

seizure states. The non-seizure EEG appears to be more

random signal with little structure. However, the seizure

patterns in the newborn EEG are characterized by periods

of rythmic spiking or repeated sharp waves [2].

Neonatal EEG is non stationary, which has led to the

application of segmented analysis and non stationary signal

processing to the seizure detection problem [3], [4]. An inter-

esting approach to seizure detection was outlined in Rankine

et. al. [5] and was based on atomic decomposition. This

approach suggested that a measure of coherence between the

dictionary and the signal may prove to be a useful feature in

seizure detection. The aim of this paper is to further extend

this method of seizure detection by developing a dictionary

that is highly coherent with seizure that will maximize the

difference in coherence between seizure and non-seizure

classes. The development of this dictionary will be based

on recent work in seizure modeling [6].

Coherence within a dictionary is an important parameter

for a successful sparse recovery of the signal [7]. A measure
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of dictionary coherence can be defined as the absolute value

of the largest inner-product of any pair of distinct atoms [8].

The coherence of the dictionary places an upper-bound on

the residual error decay rate in the atomic decomposition

algorithm [9]. Therefore, for sparse coding, a dictionary

with small coherence is desirable. If the atoms in the

dictionary are coherent with the underlying signal, then fewer

significant atoms will be needed to approximate the signal.

Likewise, the number of atoms required to approximate a

given signal will increase as the level of correlation with the

atoms in the dictionary reduces.

In [10], a time-frequency (TF) matched-filter based al-

gorithm was developed for newborn EEG seizure detection

in which the TF signatures of EEG seizures were used

as templates by the matched filter to detect EEG seizures.

However, in our work presented here, we have designed a

coherent TF dictionary for neonatal EEG seizure detection

based on a model of newborn EEG seizure [6] that is

more coherent with seizure which should result in improved

detection performance. Several metrics were used to demon-

strate the performance of the proposed dictionary. These

metrics give the level of coherence of the dictionary with

the neonatal EEG seizure epochs. We have also defined a

detection statistic based on the number of atoms required for

reconstruction similar to the structural complexity measure

used in [5].

II. METHODS

Parametric Function

Given an overcomplete dictionary of functions or atoms,

D ∈ Rm×n, any EEG signal Y ∈ Rm×1 can be represented

as

Y = Db + E. (1)

Here D is the overcomplete dictionary (m ≪ n) where m
is the length (samples) of the signal and n is the number

of atoms in the dictionary, E ∈ Rm×1 is the residual

error obtained after decomposition and b ∈ Rn×1 is the

set of sparse coefficients selected by the decomposition

algorithm. The sparsity of the EEG signal representation

can be increased using an appropriate dictionary D which

is highly coherent with the given class of signals and thus

minimizing the residual error, E. Here, we assume that the set

of elementary functions can be described using a parametric

function.

In [6], a method to simulate newborn EEG signal was

proposed using the nonlinear Duffing oscillator model. This

model suggests that the impulse response of the Duffing
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Fig. 1. Example impulse response of a selected Duffing oscillator and its
parametric function approximation (with α=0.45 and β=0.025).

oscillator could be used to generate atoms representing

neonatal EEG seizure. The resulting atoms could then be

translated and scaled to form an overcomplete dictionary of

atoms. A parametric function approximation to the impulse

response of the Duffing oscillator is used in this paper. This

function is defined as,

g(t; Φ) = e−0.5α
2
t
2

sin[2π
(

ft− βt2)
]

. (2)

The parameter vector Φ = [α, β, f ]T can then be identified

to produce the desired impulse response. The parameters α
and β control the sharpness (time resolution) and the rate

of change of frequency of the function respectively. This

function is linear frequency modulated with the amplitude

modulated by an exponential decay [11]. Fig. 1 shows an

example of how well this parametric model can approximate

the impulse response of a typical Duffing oscillator.

Dictionary Design

The dictionary is constructed from time and frequency

shifts of the parametric function in eq. (2), as g(t−tk, f−fk).
Here the frequency shift fk and the time shift tk are sampled

uniformly to populate the entire TF plane. Therefore an atom

corresponds to a single column of this dictionary with a

specified centre frequency (f − fk) delayed in time by tk as

described in [8].

Matching Pursuit (MP) has been widely used in EEG ap-

plications [4], [5]. However, we employ Orthogonal Match-

ing Pursuit (OMP) which is a modification of traditional MP

algorithm. The main difference between OMP and MP is

that the coefficients in OMP are the orthogonal projection

of the input signal Y on the dictionary D [12]. OMP adds a

least-squares minimization to each step of MP to obtain the

best approximation over the atoms that have already been

chosen, which significantly improves the performance of the

decomposition.

Neonatal EEG Data

A dataset of EEG recordings from 18 newborns obtained

in Cork University Maternity Hospital, Cork, Ireland was

used. The combined length of the recordings totals 816.7h
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Fig. 2. Sample of one minute neonatal EEG signal using in this paper. (a)
Seizure, and (b) Non-seizure signal.

and contains 1389 seizures including both electrographic-

only and electro-clinical seizures of focal, multi-focal and

generalized types. The EEG was recorded using the Viasys

NicOne EEG system, with a sampling frequency of 256 Hz.

All seizures were annotated independently by two experi-

enced neonatal electroencephalographers with the assistance

of video EEG. This study had full ethical approval from the

Clinical Ethics Committee of the Cork Teaching Hospitals.

The data were annotated using eight EEG channels in bipolar

montage: F4-C4, C4-O2, F3-C3, C3-O1, T4-C4, C4-Cz, Cz-

C3, and C3-T3. A hundred one minute artifact free newborn

EEG segments were extracted from the dataset and used to

test the proposed algorithm (sample shown in Fig. 2). The

EEG signal was down sampled to 32Hz (from 256 Hz), as

the significant energy in the newborn EEG (> 95%) does

not exceed alpha band (8-12 Hz) [6].

Performance Evaluation

The following performance metrics were used to compare

different dictionaries

1) percentage time error (PTE%),
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2) percentage frequency error (PFE%),

PFE% = 100
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3) percentage difference in area under the performance

metrics curve (dACPM%),

dACPM% = 100
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(5)

where xo and xr are the original and reconstructed signal,

respectively. For the given no. of atoms, the reconstruction

errors (PTE% and PFE%) would naturally be expected to

be lower for seizure when compared to nonseizure signals

if the atoms in the dictionary are coherent with the seizure
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signal. ACns and ACs are the area under the nonseizure and

seizure error curves, respectively, for the given performance

metric (PM). This value gives the level of separability

between seizure and nonseizure signals using different dic-

tionaries. The area under the curve is lower for the signal

with which the atoms in the dictionary are more coherent.

Four different dictionaries were involved in this exper-

iment: (i) the proposed exponentially modulated chirplet

dictionary, (ii) A Gabor dictionary consisting of translated,

scaled and modulated versions of a Gaussian window [13],

(iii)A Fourier dictionary, and (iv) A Wavelet packet dic-

tionary built from a Daubechies 4 quadrature mirror filter,

consisting approximately Nlog2N waveforms which is a

family of orthonormal wavelet basis. We chose two times

overcomplete dictionaries to run the OMP algorithm.

Seizure Detection

The OMP algorithm was applied to 100 one minute EEG

data segments using different dictionaries. The performance

metrics as defined earlier were used as feature for seizure

detection. The sensitivity and specificity using the proposed

algorithm are calculated as TP/(TP+FN) and TN/(TN+
FP ) respectively, where TP is the number of seizure epochs

correctly detected as seizure, FP is the number of non-seizure

epochs wrongly detected as seizure, TN is the number of

non-seizure epochs correctly detected as non-seizure, and

FN is the number of seizure epochs wrongly detected as non-

seizure. The area under the Receiver Operator Characteristic

curve (AUC), which shows the variation of sensitivity with

specificity [1] was obtained and gives the measure of perfor-

mance of different dictionaries. Random discrimination will

give an area of 0.5 and perfect discrimination gives a value

of 1.

In order to find the optimal values for α and β, the

proposed dictionary was tested on several seizure waveforms

and the values of α = 1.2 and β = 0.3 were found to

yield lower reconstruction errors for seizure signals using

the OMP algorithm. The frequency f was selected as 16

Hz in accordance with the Nyquist limit. The algorithm was

implemented in MATLAB R©.

III. RESULTS AND DISCUSSION

100 atoms were used to decompose the EEG signal using

OMP algorithm for different dictionaries. The TF represen-

tations of the atoms chosen by the OMP from the proposed

dictionary for typical seizure and non-seizure signals are

shown in Figs. 3 and Figs. 4 respectively. It can be seen

that the atoms selected for the seizure signal lie in the

low frequency region, whereas the atoms for non-seizure

signal are randomly distributed in both the low and high

frequency regions of the TF plane. Moreover, there appears

to be some recognizable structure present in seizure with

little structure in the non-seizure TF plots. This suggests that

patterns appearing on the TF plot may be useful for seizure

detection.

As can be seen from Table I, the best seizure and non-

seizure signal reconstruction using a minimal number of
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Fig. 3. TF plot using Wigner-Ville Distribution of 100 atoms in the
proposed dictionary selected by OMP algorithm for a seizure signal (PTE
= 35.4%, PFE = 32.1%).
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Fig. 4. TF plot using Wigner-Ville Distribution of 100 atoms in the
proposed dictionary selected by OMP algorithm for a non-seizure signal
(PTE = 46.1%, PFE = 36.8%).

atoms were obtained using the proposed dictionary. More-

over, the relative difference between seizure and non-seizure

classes obtained using the proposed dictionary is higher

when compared to other dictionaries. This suggests that the

proposed dictionary can be used for seizure detection and

can be developed further for seizure classification purposes.

To evaluate the performance of the proposed dictionary,

the sensitivity and specificity was calculated for all 100

one minute data segments. After calculating these values,

the AUC value was obtained for different dictionaries. The

number of atoms was restricted to 20 and the area under the

reconstruction metric (dACPTE%) was used as a feature for

seizure detection. From Table II we can see that the pro-

posed algorithm outperforms other dictionaries in terms of

seizure detection, suggesting that the atoms in the proposed

dictionary are more coherent with the seizure signals.

The validation of the proposed algorithm is yet to be

performed for seizure detection over long duration EEG

recordings. Moreover, the results obtained in this paper

were obtained on one minute EEG data segments which

were relatively artifact free. The efficiency of the proposed
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TABLE I

MEAN VALUES FOR ALL 100 ONE MINUTE DATA FROM DIFFERENT DICTIONARIES USING 100 ATOMS

Parameters Proposed Dictionary Gabor Dictionary Fourier Dictionary Wavelet Dictionary
Seizure Non Seizure Seizure Non Seizure Seizure Non Seizure Seizure Non Seizure

PTE,% 37.3 48.4 51.7 63.3 54.4 66.4 53.5 64.0
PFE,% 34.3 38.8 43.1 54.5 54.4 66.4 45.9 57.4

TABLE II

OVERALL PERFORMANCE EVALUATION USING DIFFERENT DICTIONARIES

Performance Proposed Gabor Fourier Wavelet

PTE 47.5 33.1 24.5 17.3
dACPM % PFE 50.7 42.3 24.5 32.2

AUC 0.91 0.84 0.78 0.86
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Fig. 5. Seizure error curve using 100 atoms for various dictionaries. The
number in the brackets indicates the percentage standard deviation.
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Fig. 6. Non-seizure error curve using 100 atoms for various dictionaries.
The number in the brackets indicates the percentage standard deviation.

algorithm is yet to be tested on long continuous EEG traces

in the presence of artifacts. It was also observed that the

AUC values for different dictionaries varied depending on the

number of atoms selected which suggests that a method can

be developed for selecting the optimal number of atoms for

discrimination. The TF dictionary can be improved further by

including the atoms that are not coherent with key artifacts.

IV. CONCLUSION

In this paper, we have designed a novel dictionary for

seizure detection using an exponentially modulated chirplet

function. The proposed dictionary was found to be superior

when compared to Gabor, Fourier and wavelet dictionaries.

This suggests that the new TF dictionary developed is highly

coherent with the neonatal EEG seizure structures which

can be further developed for seizure classification purposes.

Further research involves optimizing the dictionary further

for neonatal EEG seizure and generate features from the

dictionary to detect seizure events in the presence of artifacts.

REFERENCES

[1] A. Temko, E. Thomas, G. Boylan, W. Marnane, and G. Lightbody,
“EEG-Based Neonatal Seizure Detection with Support Vector Ma-
chines”, J. Clin. Neurophysiol., vol. 122, no. 3, pp. 464–473, 2011.

[2] E. Niedermeyer and F. H. Lopes da silva, “Electroencephalography:
Basic principles, Clinical Applications and Related Fields”, pp. 802–
875, Williams and Walkins, 1993.

[3] P. Celka, B. Boashash, and P. Colditz, “Preprocessing and
Time-frequency analysis of newborn EEG Seizures”, IEEE

Eng. Med. Biol. Mag., vol. 20, no. 5, pp. 30–39, Oct. 2001.
[4] M. S. Khlif, M. Mesbah, B. Boashash, P. Colditz, “Influence of

EEG artifacts on detecting neonatal seizure”, Information Sciences

Sign. Process. and their Applications, pp. 500–503, May 2010.
[5] L. Rankine, M. Mesbah, B. Boashash, “A matching pursuit-based

signal complexity measure for the analysis of newborn EEG”,
Med. Biol. Eng. Comput., vol. 45, pp. 251–260, Mar. 2007.

[6] N. J. Stevenson, M. Mesbah, G. B. Boylan, P. B. Colditz and
B. Boashash, “A nonlinear model of newborn EEG with nonstationary
inputs”, Annals of Biomed. Eng. , vol. 38, no. 9, pp. 3010–3021, 2010.

[7] R. Rubinstein, A. M. Bruckstein, M. Elad, “Dictionaries for Sparse
Representation Modeling”, Proceedings of the IEEE, vol. 98, no. 6,
pp. 1045–1057, June 2010.

[8] M. Yaghoobi, L. Daudet, M. E. Davies, “Parametric Dictionary Design
for Sparse Coding”, IEEE Trans. Sign. Process., vol. 57, no. 12,
pp. 4800–4810, Dec. 2009.

[9] J. Tropp, “Greed is good: Algorithmic results for sparse approximation”,
IEEE Trans. on Info. Theory, vol. 50, no. 10, pp. 2231–2242, 2004.

[10] M. Mesbah, M. Khlif, B. Boashash, P. Colditz, “Newborn EEG seizure
detection using optimized time-frequency matched filter”, Sign. Pro-

cess. and Appli., vol. 12, no. 15, pp. 1–4, 2007.
[11] D. Mihovilovic and R. N. Bracewell, “Adaptive chirplet representation

of signals on time-frequency plane”, Electron. Lett. 27, pp. 1159–1161,
1991.

[12] J. A. Tropp and A. C. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit”, IEEE Trans. Info. Theory,
vol. 53, no. 12, pp. 4655–4666, 2007.

[13] S. G. Mallat and Z. Zhang, “Matching Pursuits with Time-Frequency
Dictionaries”, IEEE Trans. on sign. process., vol. 41, no. 12, pp. 3397–
3415, 1993.

1076


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

