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Abstract— Improving seizure detection performance relies
not only on novel signal processing approaches but also on
new accurate, reliable and comparable performance reporting
to give researchers better and fairer tools for understanding the
true algorithm operation. This paper investigates the sensitivity
of current performance metrics to the duration of data that
must be marked as candidate seizure activity before a seizure
detection is made. The results demonstrate that not all metrics
are insensitive to this high level choice in the algorithm design,
and provide new approaches for comparing between reported
algorithm performances in a robust and reliable manner.

I. INTRODUCTION

Epilepsy is a serious neurological disorder, characterised

by recurrent debilitating seizures, that affects 50 million

people worldwide [1]. To aid in diagnosis and treatment there

has long been an interest in the development of automated

seizure detection algorithms [2]–[4]. However, obtaining

completely accurate detection is very challenging and is still

an active research topic. Based upon the EEG (electroen-

cephalogram), algorithms use signal processing to emphasise

periods of seizure activity and then classification to make an

automated detection. Historically, the focus for algorithm im-

provement has been the investigation of different techniques

for the emphasis and classification stages. Many algorithms

have been reported, however the wide variety of performance

metrics and methodologies used has made fair comparisons

between different techniques extremely problematic.

There is therefore now an increasing interest in re-visiting

how algorithm performance is assessed to give researchers

better and fairer tools for understanding the true algorithm

operation [5]–[7]. Recent studies have investigated a number

of test methodology factors and their effect on the reported

performance:

• The inter-patient variation [3].

• The record duration and number of events [6].

• The time collar around each detection [5].

• The imbalance in the test data (where there is signifi-

cantly more non-seizure data than seizure data) [7].

Without correction, factors such as these can have a substan-

tial impact on the reported performance level even though the

same algorithm may be used in all cases.
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In this paper, the impact of another critical factor on the

reported seizure detection performance: how long a candidate

detection needs to last before an actual detection is made, is

investigated. Metrics that can be used to accurately compare

algorithms must be insensitive to this high level choice in

the algorithm design, but our results demonstrate that not

all metrics satisfy this. Our results provide a starting point

for allowing comparisons in performance between algorithms

that make different choices for this factor.

Section II describes the performance metrics used, giving

particular attention to their applicability for specific seizure

detection problems. Seizure detection has many variants

including: seizure occurrence detection [2], seizure onset

detection [3], seizure termination detection [8], or seizure

recording/data selection [9], and all future robust metrics

must be closely linked to the specific variant. Section III

then uses the fixed output of a seizure detection algorithm,

changing how the metrics are calculated, to investigate the

impact of the required detection duration. Finally the results

are discussed and conclusions drawn in Section IV.

II. PERFORMANCE METRICS

The metrics used in this work are defined below and

are split into two categories: performance and cost. These

metrics are defined assuming that the seizure detection

algorithm analyses non-overlapping epochs of EEG data such

that each epoch can be labelled as either: a true positive

detection (TP ); a false positive detection (FP ); a true

negative decision (TN ); or a false negative decision (FN ).

A. Performance: Epoch-sensitivity

The percentage of seizure epochs correctly detected:

Epoch-sensitivity =
1

M

M∑

i=1

TP

TP + FN
× 100% (1)

where M is the number of EEG records containing seizures

and i is the record number. This quantifies the percentage

of the total seizure duration that has been correctly detected

but it does not indicate how many different seizures have

been detected. It has also been called recall [5], integral-

overlap [10], or more generally sensitivity [9].

Applicability: This is an essential metric for seizure record-

ing/data selection where only short sections of interesting

EEG are recorded. High epoch-sensitivities show that the

interesting data sections have been successfully selected. For

seizure occurrence detection to assist in the offline review of

data, the metric is less pertinent. If 10 s of EEG are displayed

at a time during review, data before and after the seizure
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marker is naturally displayed to the neurologist, regardless

of whether the algorithm identifies all of the data as seizure.

B. Performance: Event-sensitivity

This is the percentage of seizure events that are cor-

rectly detected, and has also been called average per-

centage seizures detected [2], good detection rate [5],

any-overlap [10], and sensitivity. To achieve 100% event-

sensitivity only a single detection in every seizure is required,

whereas for 100% epoch-sensitivity all epochs in all seizures

must be detected. It is thus generally possible to have better

appearing results when considering only the event-sensitivity.

Applicability: This is an essential metric for all variants of

seizure detection, showing how many seizures are detected.

C. Cost: Specificity

The percentage of non-seizure epochs correctly identified

as non-seizure:

Specificity =
1

M

M∑

i=1

TN

TN + FP
× 100%. (2)

Specificity is a common cost metric although it can be

weighted by imbalanced datasets: if most of the analysed

data is non-seizure, TN can be large giving a high specificity,

even if the false positive rate is impractically high.

Applicability: Specificity is an appropriate metric for both

data selection and seizure occurrence detection as it is a

measure of the percentage of non-seizure data (100%−
specificity) that the neurologist will unnecessarily review.

D. Cost: False positive rate & Duration under false positive

False positive rate is the number of epochs incorrectly de-

tected as seizure epochs, normalized by non-seizure duration.

[5] suggested modifying this to be the total time duration

of false positive epochs per hour to account for different

methods of grouping closely spaced false positives. If no

grouping of false detections is done, with non-overlapping

epochs the two metrics are directly proportional.

Applicability: False positive rate is most applicable to

algorithms that raise an alarm for intervention. For non-

overlapping epochs, duration under false positive is math-

ematically equal to (100%−specificity) × 3600 (s).

E. Cost: Precision

The fraction of all detections that are correct:

Precision =
1

M

M∑

i=1

TP

TP + FP
× 100% (3)

also known as selectivity [11]. Precision overcomes the

imbalance issue of specificity, but can be weighted if records

with no seizure events are analysed. In such records, TP (and

precision) will be zero, reducing the reported average preci-

sion across M records. Additionally, algorithms tested with

little non-seizure data will inevitably have high precision as

the number of false positives possible will be low.

Applicability: The precision is particularly pertinent for

applications that require a sampled EEG review by the

neurologist, such as a review of seizure frequency.

III. DETECTION DURATION IMPACT

Given the well defined and comprehensive analysis frame-

work from Section II, it is now possible to investigate the

impact of how much of a seizure needs to be identified

as seizure activity before an automated detection is made.

Previous work on seizure detection has used differing sizes

of non-overlapping analysis epochs, typically from 1 s to

20 s [4], [9] and metrics that can accurately compare

algorithms must be insensitive to this high level choice in

the algorithm design.

To investigate this, the seizure detection algorithm de-

scribed in the Appendix has been evaluated on 18-channel

EEG data using short 1 s epochs. The output of this is then

post-processed so that 1 s, 2 s, 5 s, 10 s and 20 s sections of

data must be continuously marked as seizure activity before

a detection is made. The impact of this duration on the

performance metrics from Section II is then plotted. The

algorithm has been tested on publicly available scalp EEG

data [12], [13] obtained from 22 paediatric patients. This

imbalanced data set contains 635 records (>916 hours) with

102 records containing a single expert marked seizure (total

duration 7817 s). The results from the analysis of this data

are given below and discussed in Section IV.

A. Impact on performance metrics

The detection algorithm is simulated at a particular deci-

sion threshold (see Appendix) to generate a pair of epoch-

sensitivity and event-sensitivity values. Fig. 1 plots these

pairs as 1 s, 2 s, 5 s, 10 s and 20 s of data needs to be identi-

fied as seizure in order to make an overall detection. Different

decision thresholds are also used to illustrate the full range of

sensitivity values. As expected, event-sensitivity consistently

reports better appearing results than epoch-sensitivity. The

difference between the two is small when both sensitivities

are very high or very low, and the effect is reduced as

larger durations are required for detection. Inspection of

the changes shows that epoch-sensitivity is approximately

constant with detection duration; the differences arise due

to substantial changes in the event-sensitivity. Thus epoch-
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Fig. 1. Epoch-sensitivity and event-sensitivity, for the algorithm in the
Appendix at different thresholds, as the required detection duration is varied.
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Fig. 2. Variation in cost metrics with required detection duration. (a) Specificity. (b) Duration under false positive. (c) False positive rate. (d) Precision.

sensitivity is selected to investigate the change in results

reported by each of the four cost metrics.

B. Impact on cost metrics

Fig. 2 demonstrates the variance of the four cost metrics

with the required detection duration. The metrics are plotted

against epoch-sensitivity; results against event-sensitivity can

be found by comparing with Fig. 1.

Both specificity (Fig. 2(a)) and duration under false pos-

itive (Fig. 2(b)) are very robust, showing little variation as

the required detection duration changes. Whilst the duration

under false positive remains insensitive, the same is not true

for false positive rate (Fig. 2(c)). As the short 1 s analysis

epochs are grouped into larger epochs for decision making,

the absolute number of false positives must inevitably reduce

as the number of time instances at which a false positive

can be detected is reduced. This effect also manifests in

the precision (Fig. 2(d)). At low sensitivities the number of

true positivies (TP ) is low, and the absolute number of false

positives (FP ) has an appreciable effect on the calculation

(TP/(TP + FP )). At higher sensitivities the precision is

more independent of the detection duration.

IV. DISCUSSION AND CONCLUSIONS

Comparison of the epoch-sensitivity and event-sensitivity

(Fig. 1) shows that the event-sensitivity consistently reports

higher values for the same algorithm output. It is also

more affected by changes in the required detection duration.

This is reinforced by the results of Fig. 2 where plotting

cost against epoch-sensitivity shows little vertical change in

epoch-sensitivity, all shifts are in the horizontal cost direc-

tion. Epoch-sensitivity can therefore be robustly compared

between different algorithms. Algorithms that report only

event-sensitivity may not be directly compared if they use

different detection durations.

Similarly, from Fig. 2 specificity and duration under false

positive are insensitive to changes in detection duration. As

both the number of true negatives (TN ) and false positives

(FP ) are inversely proportional to detection duration, the

specificity calculation (TN/(TN + FP )) is independent.

Some small deviations in the calculated values are present

in Fig. 2, and these are due to the change in the absolute

number of TN and FP present in each case, affecting

the mathematical accuracy of the specificity calculation. As

a result, algorithms that use specificity or duration under

false positive as their cost metric can be accurately di-

rectly compared. Ones using the precision metric cannot be.
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However, we agree with [5] that precision is an important

metric to report for future algorithms. Hence, weighting of

the precision by the detection duration and amount of non-

seizure data analysed should be accounted for and controlled

if possible. Likewise, we believe that reporting the duration

under false positive should be preferred to reporting the raw

false positive rate. Furthermore, comparing the specificity

performance curve (Fig. 2(a)) with the precision performance

curve (Fig. 2(d)) reveals very different pictures of underlying

algorithm performance. Depending on the pertinence of the

metrics for the specific seizure detection application, as

discussed in Section II, this can have a substantial impact

on the applicable algorithm performance.

Overall, for ease of comparison between the performance

of different seizure detection algorithms it is necessary to

use metrics that are independent of high-level algorithm

design choices which would be tailored to the needs of

the specific detection application. Section II overviewed six

metrics, giving particular attention to their utility in different

specific applications. These have then been assessed for

their independence to the amount of data needed to be

detected in order to make a seizure detection. Section III

demonstrated the impact of this, and our results allow

more accurate and reliable comparisons between reported

algorithm performances. Inevitably there will be other impor-

tant factors affecting truly fair comparisons, such as record

duration, the number of events in the database, and patient-

dependence. An effort to combine these and develop a

conclusive framework for performance evaluation of seizure

detection algorithms will offer significant improvements to

future seizure detection algorithms that goes beyond only

attempting to develop new signal processing techniques.

APPENDIX

The seizure detection algorithm used in this study is shown

in Fig. 3. Initially the single channel input EEG data y(k)
where k is the sample number, is filtered using a first order

high-pass filter with a cut-off frequency of 0.16 Hz. Then

y(k) is split into non-overlapping epochs of 1 s duration to

calculate the line length feature [3]:

L(x) =

N∑

k=2

|y(k − 1)− y(k)| (4)

where N is the total number of samples within epoch x.

To estimate line length during non-seizure data, a median

decaying memory (referred to as BG(x)) is calculated over

the past 240 s of the feature:

BG(x) =(1− λ)median(L(x− 1) · · ·L(x− 240))

+ λBG(x− 1) (5)

where the decay constant λ = 0.99923 [14]. In the first 240 s

of data the background is calculated by taking the median

of (L(x− 1) · · ·L(1)). For the first epoch, x = 1, BG(1) =
L(1). The normalized line length N(x) = L(x)/BG(x) is

then compared to a pre-selected fixed threshold β. If N(x)
exceeds β the current epoch is classified as a candidate

High pass filter

(cut-off frequency 0.16Hz)

Single channel EEG y(k)

Calculate line length L(x)

within epoch x

Normalization:

N(x) = L(x) / BG(x)

Calculate background BG(x)

Threshold:

N(x) >β 

Seizure Non-seizure

No

Yes

Single epoch delay

      Buffer: {L(x-1) ... L(x - 240)}

L(x)

BG(x)
Single epoch delay

L(x-1)

BG(x-1)

Fig. 3. Flowchart of the seizure detection algorithm.

seizure epoch, otherwise it is marked as non-seizure data.

If an epoch is classified as a seizure in one channel, then

epochs from all channels at that time are marked as seizure.
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