
  

  

Abstract— A system that reliably classifies daily life activities 

can contribute to more effective and economical treatments for 

patients with chronic conditions or undergoing rehabilitative 

therapy. We propose a universal hybrid decision tree classifier 

for this purpose. The tree classifier can flexibly implement 

different decision rules at its internal nodes, and can be 

adapted from a population-based model when supplemented by 

training data for individuals. The system was tested using seven 

subjects each monitored by 14 triaxial accelerometers. Each 

subject performed fourteen different activities typical of daily 

life. Using leave-one-out cross validation, our decision tree 

produced average classification accuracies of 89.9%. In 

contrast, the MATLAB personalized tree classifiers using 

Gini’s diversity index as the split criterion followed by 

optimally tuning the thresholds for each subject yielded 69.2%. 

I. INTRODUCTION 

Home monitoring of activities can both improve 
medical care and reduce costs, through feedback to 
both individuals and health care providers. 
Therefore, increased research effort is going into 
the creation of systems that record human motions 
with feasible cost, classify activities with good 
accuracy, and then analyze these activities with 
respect to different rules [1] [2] [3] [4]. 

Some systems [1] [2] have classified small 
numbers of daily activities using naïve Bayes 
classifiers with accuracy up to 90%. As the number 
of classes grows, using a single-stage classifier 
becomes problematic at many levels, not least in 
the large volume of training data required. 
Decision tree classifiers [3] [4] [5] [6] [7] better 
handle complex decision regions by partitioning 
them into smaller sets with low dimensional 
hypothesis spaces at each stage. Advantages 
include reduced training set size, robustness to 
outliers in training data, extensibility of target 
classes, and invariance under monotone 
transformations. Nonetheless, decision tree 
methodologies that apply a single classifier type at 
each node can suffer from mismatches between 
assumed and actual distributions for different sets 
of classes, resulting in unacceptable accuracy. 
Another issue is the generalizability of a model. In 
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a clinical trial, due to very high logistical costs, one 
can acquire extensive ground truth only for a small 
set of subjects; for the rest, at best only short 
training is feasible. However, large classifier 
accuracy gains result when models are adapted to 
individuals. One approach is to create a decision 
tree structure that fits the population, and then tune 
only the decision thresholds using the short 
training sequences from individuals. This was 
attempted in [3], but with inadequate accuracy.  

In this paper, we report a complete procedure 
for daily life activity classification, from data 
collection, feature extraction, tree structure and 
feature selection, to testing. The resulting classifier 
is generalizable and has high accuracy. We 
conclude with possible extensions of the work. 

II. DATA COLLECTION AND FEATURE EXTRACTION 

A. Data Collection 

We used the Gulf Coast Data Concept USB 
Accelerometer X6-2mini with a built-in tri-axial 
accelerometer [8] to collect the data at the sample 
rate 160 Hz, resolution 16 bits, and gain ±6g. We 
put accelerometers on 14 parts of the body, as 
described in Table I. In the training and testing 
processes, each sensor collected x, y, and z 
directions of acceleration, thus producing in total 
42 channels of data. Seven people took part in data 
collection, with 2 hours of measurement for each 
person. Each was asked to perform the series of 
common activities listed in Table II. An annotator 
followed the subject to label the activities using an 
Android program to log start and stop time of each 
activity. During the experiment, start and end 
markers were manually added. 

B. Feature Extraction 

  After collecting the annotated data, we 
extracted features from the measured acceleration 
using a moving window of length 4 s and of step 
size 1 s. The window size of 4 s ensured that we 
captured more than a complete cycle for every 
activity, to enable similar features for each class. 
The step size of 1 s yields activity classification 
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resolution of one prediction per second. In each 
window, thirty-one features for each accelerometer 
were calculated. These features include signal 
mean, variance, energy, max and min value, 
dominant frequency, etc. 

TABLE I. SENSOR PLACEMENTS 

Upper limb and head Lower limb 

Forehead Left and right pockets 

Chest Left and right knees 

Right and left elbows Left and right ankles 

Right and left wrists Left and right toes 

TABLE II. COLLECTED ACTIVITIES 

Motion Stationary 

Walk slowly Stand 

Walk fast Sit upright 

Run Sit while slouching 

Walk up slope Sit while hunching 

Walk down slope Lie on back 

Walk upstairs Lie on stomach 

Walk downstairs Lie on side 

III.  HYBRID TREE FORMATION 

The proposed hybrid tree classifier T includes l 
internal nodes. An internal node of a tree is a node 
that is not a leaf node. T can be thought as a set of l 
single-stage classifiers, each with its subset of 
classes, features and the decision rules used for the 
node. One can write 

  (1) 

where C is the subset of classes of node t, 
indicating how to group classes in that node; F is 
the feature set used for node t; and D is the 
decision rule of node t. Forming a tree classifier 
consists of deciding upon C(t), F(t) and D(t) for 
each internal node based on prior knowledge and 
observation of the training data.  

We manually determined the tree based on our 
knowledge of the  activities, and found feature sets 
and decision rules for each internal node. That is, 
we fix the set of classes C for all nodes and try to 
find the feature set F* and decision rules D* that 
minimize the overall classification error. In 
contrast to most designs of decision tree classifiers 
[9] [10] where only one type of decision rule is 
used, we used both the naïve Bayes classifier and 
support vector machine (SVM) at internal nodes. 
The naïve Bayes classifiers were used to classify 
motion activities, since after observing various 
features of the training data given each class, we 
found Gaussian distributions formed adequate 
descriptions for such changing features; SVMs 
were used to classify stationary activities, such as 

standing, lying, and sitting, since the training data 
are concentrated, and fewer outliers occur. 

IV. UNIVERSAL HYBRID DECISION TREES 

After creating a hybrid tree classifier for 
classifying various activities, we then tried to find 
a single tree that can classify multiple sets of 
testing data from many subjects. This is important 
since with this tree we can specialize the classifier 
to individuals with minimal additional training, 
therefore making the model more easily applied to 
the general public. Since machines do not easily 
learn how to generalize a model, automatically 
created trees are often too specific to the trained 
data. For each tested subject, we tuned the decision 
thresholds for each internal node, and the final 
classifier model was formed. Although this seems 
time-consuming, the generalizability of the 
classifier actually will produce a huge time saving 
as we collect more data, since annotation of 
accurate ground truth will dwarf all other human 
effort in large-scale studies.  

We now present an algorithm for systematic 
design of the tree. Let TDj be the training data for 
subject j, j=1,…,M (M=number of subjects). There 
are N manually structured trees, each with l(i) 
internal nodes for i=1,2,…,N. Each tree Ti can be 
written as 

  (2) 

with l(i) internal nodes. In every tree, the class 
subset for each node C(t) is determined for every 
internal node. Let TDj,t be part of the training data 
TDj whose classes that are involved in node t of 

tree T. is the probability of error 

of node t when applying feature set F(t) and 
decision rule D(t) on training data TDj,t. The 
algorithm can be stated as follows: 
Begin 

�� Given a set of possible decision trees, randomly 

pick a tree  with  internal nodes. 

�� For  

Find the optimal set  that minimizes 

the weighted probability of error 

  

where  is the weighting function for the subject j 

, indicating the weighting of that type of people to 

the general public.  

�� If   

T = C t( ),F t( ),D t( ){ }
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Terminate the for loop, go to step 1 and try the next 

tree T, where therr is the predefined error threshold 

 End If 

End For 

�� Output the tree classifier  

 
End Begin 

This algorithm provides a means to find a 
compromise tree that accounts for the differences 
among people, while maintaining a satisfactory 
error rate. After creating this universal hybrid 
decision tree classifier, when there is a test subject 
with only small amount of training, we can then 
apply the tree classifier, include the tree structure, 
its separating features and decision rules, to the test 
subject. All that is changed is the decision 
threshold for each internal node. The threshold is 
determined specifically for each subject, while 
maintaining the decision tree structure. 

V. RESULTS 

A. Method 

Three different decision tree classifier 
mechanisms were used in this study: the custom 
universal hybrid decision tree, automatically 
generated trees for each subject, and automated 
trees with tuned thresholds for individuals. The 
classification results were calculated using leave-
one-out cross-validation (LOOCV). 

The custom decision tree (Figure 1) consisted of 
27 nodes, where 13 were internal nodes with 
binary separation. We first manually determined 
the tree structure, and then used all data from all 
subjects except the testing one to determine the 
tree structure and features giving the highest 
accuracies. Afterward, for each subject, we 
determined decision thresholds for internal nodes 
of the tree using 40% of the data from the testing 
subject. Thresholds for each subject have to be 
determined individually since properties of each 
set of data are different from other sets. In this tree, 
we first separate motion activities from stationary 
activities. In upper part of the tree (motion 
activities), we used naïve Bayes classifiers on each 
branch, and assumed equal prior probabilities; in 
the lower part (stationary activities), we used 
SVMs with the Gaussian radial basis function 
kernel. For nodes using naïve Bayes classifiers, we 
selected two features that gave the highest  
weighted accuracy in separating classes; for nodes 

 
Figure 1.  Custom universal hybrid decision tree 

with SVM classifiers, we only selected one feature 
due to computational concerns.  

Automatically generated decision trees were 
created using the MATLAB built-in function 
“classregtree.” This function uses Gini’s diversity 
index [11] as the separation criterion. It produces 
trees that are specific to the target training data so 
that each subject has a unique decision tree. The 
acquired data varied from person to person, even 
from different parts when we chopped it. On 
average the tree had 19.9 internal nodes ranging 
from 16 to 26, and on average 20.9 leaf nodes with 
a range from 16 to 27. In LOOCV, we found the 
automated decision trees including decision 
thresholds by using data of all except one subject, 
and then tested on the targeted subject.  

To compare to the universal tree structure, we 
kept the same structure of automatically generated 
trees from the previous section and tuned their 
threshold values according to testing data. We 
called MATLAB to generate the automated 
decision tree for all subjects except the testing one, 
and then changed the thresholds of internal nodes 
of the tree using data of the testing subject. In 
LOOCV, we found the decision trees using all but 
one subject’s data, then determined the thresholds 
using 40% of the last subject’s data, and then 
tested on the remaining 60%. 

B. Result 

Table III shows the recall (true positive/(true 
positive + false positive)) and precision (true 
positive/(true positive + false negative)) for each 
class of the custom universal hybrid trees, 
automatically generated trees and automatically 
generated trees with tuned thresholds using 
LOOCV. The F-score, which is the harmonic mean 
of recall and precision, is also shown. The overall 
accuracies are 89.9%, 73.0%, and 69.2% for  
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custom generated trees and automatically 
generated trees with tuned thresholds respectively. 

The static activities are more easily classified 
than motion activities. This is because for the 
motion activities there are many variations in 
activity performance, and some are difficult to 
quantify, e.g., speed for walking fast vs. slowly, or 
the slope of walking up and down ramps. For the 
custom universal hybrid decision tree vs. the 
automated generated tree, we found that generally 
the performance of the custom tree was better than 
the automatic tree, indicating the automatic model 
was overfit to the trained data, and failed to 
classify activities that are not included in the 
training dataset. But it is worth noticing that the F-
score of walking up ramp and walking upstairs for 
the custom tree was lower than that of the 
automatic model. This was due to the variable 
slopes of ramps and thus collected data spread over 
a wide range in the feature space.  

Since the automatic model is very subject 
specific, it is fine-tuned to the training data and 
thus it is hard to generalize. Even with a short 
period of training data for the target subject, with 
full knowledge of other sets of data, we still cannot 
apply a general model generated from the dataset 
and simply change decision thresholds for each 
internal node of the tree.  

VI. CONCLUSION 

The proposed universal hybrid tree structure 
provides flexibility at the expense of the use of 
intuition or domain knowledge in its construction.  
The effort is rewarded in relative ease of tuning it 
to new individuals with modest additional training.  
Similar approaches may thus prove attractive in 
large clinical studies. A number of future research 
directions are suggested. It is of interest how to 

reduce the effort involved in model construction 
when the number of classes becomes large, as is 
the minimal ground truth required to personalize 
models to new subjects.  There is a tradeoff against 
the size and variety represented in the dataset used 
to construct the base model.  With a large enough 
set, multiple models could be employed to 
represent different populations. One might in such 
cases be able to bootstrap from the best model and 
use classification decisions to then adjust decision 
thresholds, even without any ground truth.  
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TABLE III. SIMULATION RESULT 

 Recall Precision F-measure 

Activity Custom tree Auto tree 

Auto tree 

with tuned 

threshold 

Custom tree Auto tree 

Auto tree 

with tuned 

threshold 

Custom tree Auto tree 

Auto tree 

with tuned 

threshold 

Walk slow 94.8% 60.9% 53.0% 83.5% 64.1% 72.7% 88.8% 62.4% 61.3% 
Walk fast 70.2% 98.5% 32.8% 85.0% 53.3% 76.1% 76.9% 69.2% 45.8% 

Walk down 76.8% 99.8% 50.8% 87.4% 44.5% 33.6% 81.8% 61.5% 40.4% 
Walk up 72.6% 98.1% 75.0% 67.1% 56.1% 46.9% 69.7% 71.4% 57.7% 

Stairs down 86.5% 99.8% 52.3% 92.1% 57.0% 57.9% 89.2% 72.5% 55.0% 

Stairs up 67.3% 99.7% 62.2% 68.9% 66.2% 63.8% 68.1% 79.5% 63.0% 
Run 98.6% 100.0% 99.5% 97.3% 94.9% 99.7% 98.0% 97.4% 99.6% 

Stand 99.6% 100.0% 100.0% 89.2% 99.6% 99.3% 94.1% 99.8% 99.6% 
Lie back 97.2% 100.0% 86.7% 87.3% 85.6% 85.5% 92.0% 92.2% 86.1% 

Lie side 100.0% 100.0% 89.8% 100.0% 100.0% 100.0% 100.0% 100.0% 94.6% 
Lie stomach 86.2% 99.5% 85.3% 97.2% 92.0% 89.2% 91.4% 95.6% 87.2% 

Sit slouch 99.1% 100.0% 41.8% 99.5% 65.4% 60.7% 99.3% 79.1% 49.5% 

Sit hunch 99.4% 100.0% 70.1% 99.5% 84.0% 73.9% 99.5% 91.3% 72.0% 
Sit upright 99.1% 100.0% 61.9% 99.8% 54.5% 41.5% 99.4% 70.5% 49.7% 

 

1068


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

