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Abstract— This paper presents a novel low-complexity
patient-specific algorithm for seizure prediction. Adaboost al-
gorithm is used in two stages of the algorithm: feature selection
and classification. The algorithm extracts spectral power fea-
tures in 9 different sub-bands from the electroencephalogram
(EEG) recordings. We have proposed a new feature ranking
method to rank the features. The key (top ranked) features
are used to make a prediction on the seizure event. Further,
to reduce the complexity of classification stage, a non-linear
classifier is built based on the Adaboost algorithm using decision
stumps (linear classifier) as the base classifier. The proposed
algorithm achieves a sensitivity of 94.375% for a total of 71
seizure events with a low false alarm rate of 0.13 per hour
and 6.5% of time spent in false alarms using an average of
5 features for the Freiburg database. The low computational
complexity of the proposed algorithm makes it suitable for an
implantable device.

Index Terms— seizure, prediction, power spectral density,
adaboost, feature selection

I. INTRODUCTION

Epilepsy is the one of the most common serious neurolog-
ical disorders in the world. Approximately, 1% of the world’s
population experience sporadic seizures. The quality of lives
of the epileptic patients will be significantly improved with
an automated seizure prediction device. Recently, there has
been great progress in seizure suppression methods. Some
of these approaches include deep brain stimulation therapy,
etc. A closed-loop therapy system can be developed, where
a seizure prediction device monitors and triggers the seizure
treatment.

Recently, much of the research has been carried out on
predicting and detecting seizures based on real-time analysis
of electroencephalogram (EEG) data from multiple channels.
Research on seizure prediction is focussed on finding features
that discriminate between pre-ictal (period of time before
the onset of seizure) and inter-ictal (period of time between
the seizures) periods. These features include power spectral
density [1], [2], auto regressive coefficients [3], wavelets [4],
[5], and cross-correlation measures [6], [4].

In [3] coefficients of auto-regressive (AR) models are
used as features. The prediction is based on support vector
machines (SVM) classifier. A method based on multivariate
signal coherence is presented in [6]. The algorithm uses
space-delay correlation and covariance matrices to extract
the spatiotemporal correlation structure from multichannel
ECoG signals. Wavelet decomposition and cross-correlation
techniques are used to predict a seizure event in [4] and
[5]. Further in [5], a VLSI implementation is also proposed.
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Features based on spectral power in different subbands along
with SVM classifier is proposed in [1] to predict a seizure
onset.

Even though a lot of research has been done, these results
cannot be used to realize an implantable device which can
predict seizures in real-time due to their inability to achieve
1) High sensitivity and low false positive rate, and 2) Low
power consumption and hardware complexity. The power
consumption of a reliable seizure prediction device should
be in the range of 50 µW [7]. High sensitivity and low false
positive rates can be achieved using signal processing and
machine learning techniques [8]. These cannot be adopted
for a possible real-time implementation of seizure prediction
device due to their high computational complexity. The
number of features and the type of classifier used to make a
prediction can have a dramatic effect on power consumption.

In this paper, we propose a seizure prediction algorithm
with low computational complexity, which achieves high
sensitivity and low false positive rate at the same time. The
proposed seizure prediction system will be suitable for real-
time implementation on an implantable device.

II. PROPOSED ALGORITHM

A. Dataset

The proposed algorithm is evaluated on the Freiburg
database [9] which contains electrocorticogram (ECoG) or
intracranial electroencephalogram (iEEG) recordings from
21 patients who suffer from epilepsy. The data consists of
six channels sampled at 256 Hz with 16 bit analog-to-digital
converters. The data records for each patient are divided
into ictal and interictal records by certified epileptologists.
We have chosen 16 out of the available datasets of 20
patients, who have four or more seizures. Each 20-second
long window of iEEG recordings has been categorized as
interictal and preictal. Fig. 1 shows the steps involved in
training and testing phases.

B. Feature Extraction

Preprocessing step is done to remove the artifacts such as
line noise, electrical noise, and movement artifacts in iEEG
data. When features are extracted, the spectral power in the
bands of 47-53 Hz and 97-103Hz are excluded to remove
the power line noise. Further, bipolar and time-differential
methods have been used to reduce the effect of other types
of artifacts in iEEG recordings [1]. The space-differential
measurement provides common-mode rejection to reduce
line noise and movement artifacts that are common to all the
electrodes. Time-differential method is used to normalize the
spectral power in high and low frequency bands.
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Feature extraction consists of computing the spectral
power in different frequency bands in a 20-second long win-
dow of iEEG with 50% overlap. This provides a prediction of
a seizure every 10 seconds. Spectral bands are selected based
on standard iEEG frequency bands but the wide gamma band
is split into four bands: delta (0.5-4Hz), theta (4-8Hz), alpha
(8-13Hz), beta (13-30Hz), gamma bands (30-47Hz, 53-75Hz,
75-97Hz, 103-128Hz). The power in each band is normalized
by the total power and is included as the last feature. Features
are extracted from 4 space-differential signals, which makes
a total of 36 features for a 20-second window.

C. Feature Selection

The complexity of the seizure prediction algorithm is
proportional to the number of features required to make a
prediction. We propose to find a subset of most discriminat-
ing features out of 36 features through the process of feature
selection. Feature selection has been known in the machine
learning community for many decades. It finds a subset
of features which contain essentially most of the relevant
information for making decisions. This subset of features
may result in an increase in the performance accuracy of the
model as irrelevant features are not taken into consideration
[10]. Adaboost [11] based feature selection algorithms have
been proposed in the literature [12]-[14]. Most of these
algorithms did not provide a method to sort the features, but
instead used the implicitly selected features in each iteration.
We propose a simple criterion based on which features will
be ranked.

Algorithm 1 Adaboost
Given : (x1, y1), ..., (xN , yN )
where xi ∈ X, yi ∈ Y = {−1,+1}
Initialize: T , ht

model = Adaboost(X,y,ht, T)
model contains αt, 1 ≤ t ≤ T
decision = sign(

∑T
t=1 αtht(x))

Adaboost algorithm takes input data (training set:
(xi, yi), 1 ≤ i ≤ N ), where each xi belongs to some domain
or instance space X, and each label yi is in the label set
Y = {−1, +1}. Adaboost calls a given weak or base learning
algorithm repeatedly over T iterations. Algorithm 1 shows
the basic flow of the Adaboost algorithm. The reader may
refer to [11] for the complete algorithm. The base classifier
for feature ranking process [15] is defined as follows:

h(x) = { −1 if xk < v
1 if xk ≥ v

(1)

where k is a parameter indicating the input variable used to
create the split and v is the splitting value. That is, k indicates
the feature and v denotes the threshold to differentiate
between the two classes. This base classifier is called a
”decision stump” as it consists of a classification tree with
tree depth of one (a single split decision and two terminal
nodes). Parameters k and v are selected to minimize the cost
function using a greedy optimization strategy.

1) Ranking Algorithm: Adaboost with decision stumps as
the base classifier inherently performs feature selection. In
each iteration, the algorithm selects the most discriminating
feature (one with the lowest weighted error) for the cor-
responding weights. Further, adaboost algorithm generates
weight (α) for that particular classifier which signifies the
performance of that individual base classifier. In this case,
as the base classifier is a decision stump, α signifies the
discriminating power of that particular feature used in that
iteration. We propose a ranking algorithm based on this
observation. Features are sorted by assigning a weight (wt)
for each feature. The weight of each feature is computed
using α values the algorithm has generated. The outline
of the ranking algorithm in presented in Algorithm 2. If a
particular feature is not selected at all, then the corresponding
weight will be zero.

Algorithm 2 Feature ranking
Given : (x1, y1), ..., (xm, ym)
where xi ∈ X, yi ∈ Y = {−1,+1}
Initialize: T , ht to be decision stump
model = Adaboost(X,y)
for f = 1 →d do

id = index of the iteration feature(f) is selected
wt(f) = αt(id)2

end for
rank = index(sort(wt))

D. Classification

In this step, the computed (selected) features are classified
into two classes, preictal (+1) and interictal (-1) using
a machine learning algorithm. Even though SVMs have
demonstrated impressive performance in seizure prediction
[1], [3], [6], the computational complexity of the final
decision function depends on the type of kernel used during
the training process. Table I presents the complexity analysis
of SVMs with three popular kernels [15] (linear, 2nd order
polynomial and RBF), where d denotes the number of
features and Nsv denotes the number of support vectors
generated during the training process. We can observe that
among three kernels, RBF kernel requires the highest number
of computations while linear kernel requires the lowest. The
high computational complexity of the RBF kernel makes
it unsuitable for implementing in an implantable device.
The best choice would be linear-SVM for reducing the
complexity of the seizure prediction algorithm.

Even though, the complexity of the linear-SVM is low,
the performance may be degraded if the features used are not
linearly separable. We propose to build a non-linear decision
function using a combination of linear decision functions
(in general linear decision functions are less computationally
complex). The decision stumps can act as linear classifiers
and can be boosted using the Adaboost algorithm. The main
motivation of using Adaboost is its low complexity hardware
implementation and the final decision boundary can be non-
linear as well. Further, model selection is not required for
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Fig. 1. Flow chart of the proposed seizure prediction algorithm

TABLE I
COMPLEXITY ANALYSIS OF SVM AND ADABOOST CLASSIFIERS

Classifier # ADD # MUL # WORDS
SVM Linear d d d
SVM
Polynomial
(p=2)

d2 d(d + 1) d2

SVM RBF 2Nsvd Nsvd Nsv(d + 1)
Adaboost (deci-
sion stumps)

T 0 2T

*SVM-RBF requires extra Nsv exponent operations
Adaboost requires extra T comparison operations

a)

b)

Inter-ictalPre-ictal

Fig. 2. Post processing the classifier output with 5-tap moving average
filter. a) Classifier output b) After post-processing.

the Adaboost algorithm which is an advantage compared to
the SVM.

E. Post-processing

We have observed some isolated false positives at the end
of classification step as shown in Fig. 2. Post-processing
is applied to eliminate these isolated false positives and
false negatives. We applied 5-tap moving average filter to
smoothen out these isolated events. The final prediction will
be made using the filter output.

III. RESULTS AND DISCUSSION

Fig. 1 shows the block diagram for seizure prediction sys-
tem along with training process. During the training process,
features are ranked using the proposed ranking algorithm.
Different classification models are built using SVM-Linear
and Adaboost classifier with decision stumps for different
sizes of feature sets (ranging from 1 to 36). We use double-
cross validation to ensure in-sample optimization and out-of-
sample testing.

A. Performance Analysis

Table II lists sensitivity, false positive % and number of
false positives per hour for 16 patient data sets containing
4 or more seizures. Using all the 36 features and the
Adaboost classifier, we achieved an average sensitivity of
94.375 and average FP% of 6.48 as measured by on-duration
with 30-min on period for each prediction [1]. The results
reported here compare favorably to previously published
results. The algorithms from the prior literature requires
SVM-RBF which is very computationally complex while
the proposed algorithm achieves similar results with low
complexity Adaboost classifier.

We can observe that using an average of 5 features, the
proposed algorithm is able to achieve high sensitivity and low
false positive rate. The detailed feature selection results are
presented in Table III. The # Features column represent the
number of features it required to achieve the given sensitivity
and false positive rate. Further, Table II also shows the results
with SVM-Linear using best 5 and 10 features. It can seen
that the performance using SVM classifier with linear kernel
degrades the performance. The chosen features may not be
linearly separable which leads to the lower performance with
linear kernel.

B. Complexity Analysis

Table II also analyzes the seizure prediction algorithms
from the recent literature in terms of number, type of features
and the classifier used. The number of features used is
more than 20 in the prior art using SVM-RBF classifier.
The hardware complexity of the SVM-RBF classifier is
proportional to Nsv ∗d, where Nsv is the number of support
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TABLE II
COMPARISON OF SEIZURE PREDICTION ALGORITHMS

# Pat # Sz Prediction Horizon Sens (%) FP/hr Feature # Features Classifier
[6] 19 83 30 90.8 0.094 Correlation 20 SVM-RBF
[3] 9 18 15 100 0.17 AR coefficients 36 SVM-RBF
[1] 18 80 30 97.5 0.27 Spectral Power 36 SVM-RBF

Proposed 16 71 30 94.375 0.13 Spectral Power 36 Adaboost
Proposed 16 71 30 91.25 0.27 Spectral Power 36 SVM-Linear
Proposed 16 71 30 94.375 0.14 Spectral Power 4.8125 Adaboost
Proposed 16 71 30 67.1825 0.15 Spectral Power 5 SVM-Linear
Proposed 16 71 30 85.625 0.19 Spectral Power 10 SVM-Linear

vectors and d is the dimensionality of the feature vector.
The number of support vectors (Nsv) depends on the size
of the training data set. We observed Nsv varying anywhere
between 1000 to 3000 during the training process. The com-
putational complexity of SVM-Linear and Adaboost with
decision stumps are similar except that the former requires
multiplication operation and the later requires comparison
operation. The power consumption and the hardware area of
these two classifiers are shown in Fig. 3. We can observe that
Adaboost is a better option between the two when operating
at same conditions.

TABLE III
PERFOMANCE OF THE PROPOSED SEIZURE PREDICTION ALGORITHM

Patient # Sen% FP/hr FP % # Features
1 100 0 0 3
3 100 0 0 4
4 100 0 0 2
5 60 0.7917 36.3657 8
6 100 0.0833 4.1667 4
7 100 0 0 2
9 100 0.25 12.5 4
10 100 0.1667 8.33 4
11 75 0 0 4
12 100 0 0 5
14 75 0.0833 4.1667 8
15 100 0.1667 8.333 8
16 100 0.1667 8.333 8
17 100 0.125 6.25 5
18 100 0.1667 8.33 3
21 100 0.1667 8.333 5

Mean 94.375 0.135 6.487 4.8125
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Fig. 3. Comparison of power and area of SVM-Linear and Adaboost
circuits. Circuits are synthesized using 65nm technology operating at 1V
Vdd and 1MHz clock frequency.

IV. CONCLUSIONS

A low complexity patient specific algorithm is proposed
that extracts spectral power based features from EEG record-
ings. A new feature ranking algorithm is proposed to rank the

features. Non-linear classifier is built using Adaboost with
decision stumps as base classifier, which makes it computa-
tionally less expensive compared to non-linear SVMs. The
algorithm achieves high sensitivity and low false positive rate
comparable to the previously published results but at a much
lower computational complexity. Future work will focus on
reducing the complexity in the feature extraction step.
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