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Abstract— This work presents the application of nonlinear
dynamics measures to electroencephalograms (EEG) acquired
from patients with Attention Deficit/Hyperactivity Disorder
(ADHD) before and after a neurofeedback therapy, with the
aim to assess the effects of the neurofeedback in a quantitative
way. The database contains EEG registers of seven patients
acquired in eyes-closed and eyes-opened conditions, in pre-
and post-treatment phases. Five measures were applied: largest
Lyapunov exponent, Lempel-Ziv complexity, Hurst exponent,
and multiscale entropy on two different scales. The purpose
is to test whether these measures are apt to detect and
quantify differences from EEG registers between pre- and
post-treatment. The results indicate that these measures could
have a potential utility for detection of quantitative changes in
specific EEG channels. In addition, the performance of some
of these measures improved when the bandwidth was reduced
to 3-30 Hz.

I. INTRODUCTION

Attention Deficit/Hyperactivity Disorder (ADHD) is a

neurological disorder in scholar population, affecting 5-10%

of childhood population [1]. Its main symptoms are inat-

tention, hyperactivity and impulsivity. Its diagnosis is based

on behavioral observations and questionnaires. Therefore,

quantitative analysis of EEG (QEEG) has been considered

an alternative to support prognosis of ADHD.

Diverse studies have shown an increase of theta EEG

power in ADHD children [2], some of them with a reduction

of alpha and beta activities [3]. This fact suggests the use

of the theta/beta ratio to discriminate healthy and ADHD

subjects [4]. However, this is a confounded measure, since it

combines several EEG deviations such as excess theta and a

slowed alpha peak frequency [5]. Indeed, increases in power

of alpha and theta waves, without significant differences in

beta waves, have been observed in ADHD adults [6].

Another work showed that synchronization of EEG evoked

potentials after auditory stimuli were significantly lower in

ADHD patients than in healthy subjects [7]. QEEG has also

demonstrated differences related to the clinical response to
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medication [8]-[9]. Recently, a method based on wavelet

transform to discriminate ADHD and healthy subjects was

presented, extracting chaotic and nonlinear features in dif-

ferent sub-bands of the EEG registers [10].

Most of these promising studies are oriented either towards

classifying between healthy and ADHD subjects or towards

assessing the effect of medication, although other linear

studies in QEEG have been carried out to evaluate the effect

of neurofeedback in ADHD patients [11]. In this work, our

goal was to test five complexity measures based on nonlinear

dynamics techniques, for their potential to detect and quan-

titfy differences in EEG registers of ADHD patients before

and after neurofeedback therapy. Furthermore, we strived to

identify those channels of the EEG register that provide the

maximum amount of information about these quantitative

changes. Likewise, we evaluated two ways of preprocessing

the EEG data, aiming to maximize the power of resolution

of the tested measures. The methods presented in this study

should be seen as complementary to the afore-mentioned

earlier analyses of EEG registers in ADHD patients.

II. MATERIALS AND METHODS

A. Database of EEG registers

The EEG registers were acquired at Research Institute

Brainclinics in Nijmegen, The Netherlands, employing a

linked ears montage of 26 channels: Fp1, Fp2, F7, F3, Fz,

F4, F8, FC3, FCz, FC4, T3, C3, Cz, C4, T4, CP3, CPz,

CP4, T5, P3, Pz, P4, T6, O1, Oz, and O2 (cf Figs. 1 and

2). Seven patients (4 females/3 males, average age 27.7

years) participated in this study. Every patient had a primary

diagnosis ADHD or ADD based on the MINI estructured

interview (DSM-IV based) assessed by a psychologist. Sub-

sequently, they were treated with a SMR Neurofeedback

training protocol (enhancement of 12-15 Hz at C3, Cz or

C4). Training one frequency can have multiple downstream

effects in other locations and other frequencies, therefore all

EEG recording sites were assessed [11]. Each EEG dataset

lasted two minutes, sample rate was 500 Hz (60,000 sample

points) and was acquired in eyes-closed and eyes-open

conditions, at both pre- and post-treatment. All patients were

responders to treatment (>50% improvement on inattention

and/or impulsivity/hyperactivity).

B. Preprocessing

Most of the EEG registers showed to be contaminated with

Gaussian noise and base line wander. For this reason, two

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

1057978-1-4577-1787-1/12/$26.00 ©2012 IEEE



preprocessing scenarios were utilized:

– Preprocessing 1: 3-30 Hz band-pass filtering, keeping

only the theta, alpha and beta waves (the highest fre-

quency of beta waves is 20 Hz and the lowest one in

theta waves is 4 Hz [12]).

– Preprocessing 2: 0.1 Hz high-pass filtering just to

attenuate the base line wander.

The filters were zero-phase Butterworth to reduce distor-

tions by non-linear phase effects. In both cases, reduction of

Gaussian noise was also performed with a local regression

moving average filtering, using weighted linear least squares

and a second degree polynomial model (loess function

of Matlab [13]). The percentage of the total number of

data points employed as span was 1%. This procedure was

necessary to reduce the random components in the EEG data

that could make difficult to detect their nonlinear dynamics

characteristics.

C. Characterization

The complex nature of the neuronal dynamics represented

by the EEG time series suggests the use of nonlinear dy-

namics measures for its characterization [14]. We employed

five measures selected because of their proven utility in other

studies of biomedical signal analysis

– Largest Lyapunov exponent (LLE): This measure quan-

tifies the exponential rate of separation between two

trajectories averaged across the attractor, which is the

mapping of a scalar time series s [n] onto a vector

valued sequence S [n]:

S[n] = [s[n], s[n+ �1], s[n+ �2], . . . , s[n+ �m−1]] (1)

where the embedding dimension m and the time delay

� are two empirical parameters that must be chosen

properly. To select m and � we employed Cao’s algo-

rithm and the first zero of the autocorrelation function

respectively [16]. Subsequently, we calculated the mean

value for m and � across all the EEG registers. The

nearest integers to these mean values were m=9 and

�=6. We applied the algorithm of Rosenstein for the

computation of the LLE [17]. Generally, a positive value

of the LLE is the hallmark of deterministic chaos and

typically indicates a certain degree of complexity.

– Lempel-Ziv complexity (LZC): Numerical time series

were first converted to binary symbol sequences, uti-

lizing the mean as threshold [18]. Then the LZC was

obtained as the length ratio of such symbol sequences

and related Lempel-Ziv compressed variants. The higher

the complexity of the symbol sequence (time series) the

larger this length ratio.

– Hurst exponent: It was computed by fitting the scaling

behavior of the rescaled range (max-min)/stddev with

observation time to a power law. It reflects the long time

memory of a time series that is caused by long-range

correlations [19].

– Multiscale entropy: This measure quantifies the uncer-

tainy of upcoming observations integrating a spectrum

of entropy measures in several time scales [20]. From

the data of an EEG time series, 20 new sub-time

series were obtained, each representing the input EEG

register divided in scales from 1 to 20. The scale 1

has the same lenght that the input EEG register and

the scale 20 the input EEG register divided in 20.

Subsequently, two entropy values were calculated using

the sample entropy algorithm: multiscale entropy-small

scales (ESS), the mean sample entropy between scales

1 to 5, and multiscale entropy-large scales (ELS), the

mean sample entropy between scales 6 to 20.

These measures were calculated for all preprocessed EEG

registers, i.e. all conditions (eyes-open/-closed) in pre- and

post-treatment. Subsequently, for every measure and every

single EEG channel we collected the number of patients

which evidenced an increase [decrease] of the measure.

We considered the measure applied to a given channel

as indicative of a treatment effect when at least six out

of seven patients showed a change in the same direction

(increase or decrease). Given the size of the database, we

consider the number of six patients to allow only one possible

outlier in the results. Based on the null hypothesis of no

systematic change this corresponds to a p−value of 0.0625.

In the following we call channels that evidenced a significant

change with respect to a specific measure as representative

channels.

In order to probe the null hypothesis of non-complex

characteristics of the EEG registers, we applied the method

of surrogate data by randomly shuffling time indices within

each of the original EEG registers. In this way, tempo-

ral correlations and all related complexity are destroyed,

whereas preserving the probability distributions and single

value statistics [21]-[22]. If the value of a nonlinear dynamics

measure is the same for the original and the surrogate data,

it can be concluded that there is no deterministic character

for the applied measure.

III. RESULTS

Results are presented in figures with topographic maps

that show the position of electrodes. Their captions include

up- and downward arrows, indicating whether a measure

increased [decreased] after the neurofeedback treatment.

Changes were in the same direction for all representative

channels (Figs. 3 and 4). The representative channels are

filled with gray color and the nasion is indicated by a triangle

at the top of each map. Due to limitations of space, we

present only the results of measures for which the number

of representative channels is larger than three.

From the preprocessing 1, Fig. 1 shows the representative

channels of the following measures: a) LLE and b) LZC.

The LLE increases in five channels as observed in Fig. 1(a),

whereas the LZC decrease in 14 (Fig. 1(b)). These results

were obtained from the data acquired in eyes-open condi-

tion. For preprocessing 1, analysis of data from eyes-closed

condition did not provide more than four representative chan-

nels. Likewise, application of Hurst exponent and multiscale
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(a) (b)

Fig. 1. Representative channels from the preprocessing 1. a) Largest
Lyapunov exponent (LLE) ↑; b) Lempel-Ziv complexity (LZC) ↓.

entropies did not allow to find more than four representative

channels either, not even in eyes-open conditions.

Fig. 2 shows the results for the preprocessing 2. In

this case, the largest Lyapunov exponent increased in four

channels (Fig. 2(a)), whereas the Hurst exponent decreases

in five channels (Fig. 2(b)). Fig. 3(a) and 3(b) show the

normalized differences of the measures for each of their

representative channels according to the results shown in

Figs. 1 and 2 respectively. Every point in Fig. 3 corresponds

to the difference for one of the seven patients. Differences

are less than zero (below the dashed line) when the measure

reduces and are larger than zero (above the dashed line)

when the measure increases. In each channel, there exists one

exception from the trend (outlier) that does not correspond

always to the same patient in the other channels.

Fig. 4 shows the averaged results from the calculations

of the measures employing the original EEG registers with

preprocessing 1 and their respective surrogate data in eyes-

open condition. The standard deviation of the results of

LZC with the surrogate data are close to zero and almost

imperceptible.

No more than three representative channels were found

(a) (b)

Fig. 2. Representative channels from the preprocessing 2. a) Largest
Lyapunov exponent (LLE) ↑; b) Hurst exponent ↓.
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Fig. 3. Normalized differences of measures after the neurofeedback
treatment in each representative channel. a) From Fig. 1; b) From Fig. 2.

with the measures of multiscale entropy.

IV. DISCUSSION

In this study, we examined the performance of different

measures based on nonlinear dynamics techniques to deter-

mine quantitative differences of EEG data, before and after

neurofeedback treatment in patients with ADHD who were

all characterized as responders to treatment.

We can observe interesting results: First, the changes are

not observable in all channels but in some of them depending

on the preprocessing and applied measure (Figs. 1 and 2).

The most promising results are obtained from the calculation

of LZC (Fig. 1(b)), in which 14 channels show an increase of

the measure. Another interesting observation from the results

of LZC is the considerable number of representative channels

that provide information from the left lobe and from the

division between left and right hemispheres. The reduced

number of representative channels in the LLE (Figs. 1(a) and

2(a)) would indicate that it is necessary to evaluate other

preprocessing ways to search a better performance of this

measure. Therefore, we obtain a reasonable number of 14

representative channels to consider the potential utility of the
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Fig. 4. Averaged values of the calculation of the measures for original and
surrogated EEG data sets.
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LZC measure to detect ADHD in EEG registers modified by

preprocessing 1.

In the case of the preprocessing 2, the representative

channels were found only four in the case of the LLE

(Fig. 2(a)) and five with the Hurst exponent (Fig. 2(b)). This

results show that the performance of the measures applied

in this work depends on the kind of preprocessing employed

for filtering and smoothing the EEG registers. Although the

preprocessing 2 preserves more frequency components than

the preprocessing 1, the number of representative channels is

lower. This observation suggests that a reduction of the filter

bandwitdh to 3-30 Hz, as done by preprocessing 1, allows to

obtain more representative channels and it results in a better

performance to distinguish between pre- and post-treatment.

Another particular aspect is that significant differences

are found only for data acquired in eyes-open condition,

probably because this is generally the state during which

people attend. From the results shown in Figs. 1 and 2, it

can be supposed that a reduction of randomness occurs after

the treatment with neurofeedback, which is detectable by

increase of the LLE and decrease of both the LZC and Hurst

exponent in their respresentative channels. Perhaps, certain

degree of deterministic behavior, reflected in EEG registers,

is lost in ADHD conditions and recovered after the neuro-

feedback therapy. One important feature of the measures of

LZC and Hurst exponent is their low computational cost and

easy implementation, which is a major advantage over other

complexity measures. By contrast, the calculation of LLE is

a procedure of high computational cost.

As observed in Fig. 4, it can be inferred a nonlinear

behavior in the EEG registers. As expected, the values of

LLE fall close to zero when these are calculated from the

surrogate EEG data. In contrast, the algorithmic complexity,

represented by calculation of LZC and Hurst exponent,

reaches its maximum when it is calculated from the sur-

rogate data. These results confirm the presence of nonlinear

information in the EEG registers that can be detected by the

measures of LLE, LZC and Hurst exponent applied in this

work.

In summary, reduction of the bandwidth of the EEG

registers to 3-30 Hz allows to detect in a better way

quantitative differences in EEG registers of ADHD patients

after neurofeedback treatment. In this preprocessing scenario,

differences are widely detectable in more than 10 channels

by use of the measure LZC. This finding can be explained by

the importance of the theta, alpha and beta waves, located

in 3-30 Hz, to identify signs of ADHD in EEG registers

[6]. Nevertheless, a remaining challenge is to examine other

preprocessing scenarios to increase the number of channels

that provide information about these quantitative changes.

Likewise, it is necessary to perform this analysis in larger

databases with patients treated either with neurofeedback or

other treatments.
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