
  

 

Abstract— This study analyzes the nonlinear properties of 

the EEG at transition points of the sequences that build the 

Cyclic Alternating Pattern (CAP). CAP is a sleep phenomenon 

built up by consecutive sequences of activations and non-

activations observed during the sleep time. The sleep condition 

can be evaluated from the patterns formed by these sequences. 

Eleven recordings from healthy and good sleepers were 

included in this study. We investigated the complexity 

properties of the signal at the onset and offset of the activations. 

The results show that EEG signals present significant 

differences (p<0.05) between activations and non-activations in 

the Sample Entropy and Tsallis Entropy indices. These indices 

could be useful in the development of automatic methods for 

detecting the onset and offset of the activations, leading to 

significant savings of the physician’s time by simplifying the 

manual inspection task. 

 

I. INTRODUCTION 

The Cyclic Alternating Pattern (CAP) is a sleep 
phenomenon that conveys fundamental information about the 
sleep process [1]. CAP is built up by “repeated spontaneous 
sequences of transient episodes (phase A) deviating from the 
background rhythm of the ongoing EEG with intervals that 
separate the repetitive elements (phase B)” [1-2]. Previous 
studies have shown that the main role of CAP is to create, 
consolidate and disrupt the sleep macrostructure [3]. The 
CAP behavior is a useful index to assess the sleep condition. 
This behavior is called CAP rate, and is computed by 
counting the total duration of phases A and dividing it by the 
total sleep time. This index presents a main characteristic: it 
is low during good sleep and high during disrupted sleep, 
which is produced by pathological events such as sleep apnea 
and insomnia [4]. Although CAP evaluation is a useful tool, 
its assessment is a tedious task requiring various hours to 
evaluate only one sleep recording. In addition, the CAP 
scorers need months of training before they are able to 
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analyze a sleep recording.  Due to all those difficulties, CAP 
scoring is unpractical in clinics, thus the development of 
automatic algorithms is one of the most viable ways to 
expand the application of CAP analysis.  

As commented previously the CAP contains activations 
phases, named Phases A, which are divided in three subtypes: 
a) A1 composed by strong delta waves (0.5-4 Hz), b) A2 with 
rapid EEG oscillations observed in 20 % - 50 % of the total 
activation time and c) A3 also with rapid activities, especially 
beta (16-30 Hz), observed in more than 50% of the total 
activation time. Each phase A subtype has different 
characteristics, in terms of EEG synchrony, different role and 
distribution within the sleep cycle.  

Many studies have tried to analyze the phase A 
characteristics with different approaches obtaining indices 
such as power, complexity, and spectral components. Most 
studies have used those indices to develop algorithms for 
automatic CAP detection [5-6]. These automatic methods 
produce usable results, however, most of the studies fail in 
correctly locating the onset and offset of the phases A. Those 
errors affect CAP rate evaluation since the CAP rate 
definition depends of the Phase A durations. Thus the main 
goals for accurate CAP rate evaluation are an adequate 
localization of the activations, and accurate assessment of 
their durations. These problems are not simple to solve since 
the statistical properties of the EEG signal vary significantly 
through the sleep cycles.  

The aim of the current study is to assess the onset and 
offset of the phases A at the different sleep stages through 
complexity measures.  

II. METHODS 

A. Protocol 

11 healthy adult subjects (5 male and 6 female, aged 

between 25 and 45 years, mean age 32.7 yrs, and weight 

between 58 and 75 kg, mean weight 66 kg) were used in the 

study. The subjects did not present any primary medical or 

psychiatric disorder and did not intake drugs affecting the 

central nervous system. The sleep recordings acquired at the 

Parma University Sleep Disorders Center. Each night 

recording lasted approximately 8 hours, and included EEG 

leads (F4, F3, C4, C3, A1, A2), EMG, EOG and ECG 

derivations. Sleep scoring was performed by experts, 

following standard rules [1]. The macrostructure was 

defined according to R & K rules. The analysis was done in 

one channel, C3 or C4 (C3 by default, or C4 when C3 was 

not available). The EEG was acquired with a sampling 
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frequency of 100 Hz and was bandpass-filtered from 0.05-

Hz to 40 Hz. 

 For each Phase A annotated in the EEG, a window (sk) with 

the first seconds of the phase A was compared with a 

window before sk (sk-1) and a window before sk-1 (sk-2). sk lies 

completely within the Phase A, while sk-1 and sk-2 belong to 

the background. The same procedure was applied to the end 

part of the phase A, where sk denotes the last seconds of the 

phase A, sk+1 represents a window after sk and sk+2 a window 

after sk+1. In this study the windows had duration of 2s, 

which is justified by the fact that the minimum duration of 

the Phases A is 2s. Figure 1 shows a description of the 

segments used for the analysis. The Phases A were grouped 

by subtype and sleep stage. A total of 3963 phases A were 

analyzed and defined as follows: 

 Sub1 –S1-S2 stands for Phase A subtype 1 during 

sleep stages 1 and 2. 

 Sub2 –S1-S2 stands for Phase A subtype 2 during 

sleep stages 1 and 2. 

 Sub3 –S1-S2 stands for Phase A subtype 3 during 

sleep stages 1 and 2. 

 Sub4 –S3-S4 stands for Phase A subtype 1 during 

sleep stages 3 and 4. 

 The total number of phases A per group was: Sub1 = 
828, Sub2 = 793, Sub3 = 659 and Sub4 = 1683. 

 

 

Figure 1. Example of a typical phase A, subtype 2 during sleep stage 2. 

sk represents the first 2 seconds of the activation, and sk-1 and sk-2 represent 
the background close the initial point of the phase A. 

B. Mathematical Methods 

1) Lempel-Ziv Complexity (LZC) 
The Lempel-Ziv complexity measure c(k) is defined as 

the minimum quantity of information needed to define a 
string with k symbols. The LZC quantifies the rate of new 
patterns arising with the temporal evolution of the string. The 
time series is coded into symbolic sequences, i.e. 010101 in 
the binary case or 0112021 in the ternary case. In this work 
we adopted both the binary LZC2 and the ternary LZC3 
coding procedure. c(k) is a counter which defines the number 
of new elements that are added into an alphabet v, in which 
each element is composed by the combination of 0 or 1 in the 
case of binary sequences.  

The EEG signal f(n), where n is the sample number,  was 
coded to binary and ternary sequences h(n) following the 
rules, respectively: 

a) 1 if f(n+1) > f(n) , 0 if f(n+1) <= f(n) 

b) 1 if f(n+1) > f(n) , 0 if f(n+1) < f(n) , 2 if f(n+1) = 
f(n) 

Please note that f(n+1) is considerate greater that  f(n),  if 
f(n+1) exceeds  f(n)  by at least with a 5 % of the standard 
deviation computed from the window in study.  

2) Sample Entropy 
Sample Entropy (SE) is a measure of the regularity of a 

time series, being thus informative about the underlying 
complexity in the processes giving rise to it [Richman2000]. 
The quantification of regularity is based on the logarithmic 
likelihood that the patterns of the data that are close for m 
observations remain close on next incremental comparisons 
with a longer pattern. A greater likelihood of remaining close 
produces smaller values. Larger SE values indicate greater 
independence, less predictability, hence greater complexity in 
the data. 

Let us consider a timeseries y(i)=[x(i), x(i+1),…,x(N)], of 
length N. We define two sub-sequences ym(i) and ym(j) of the 
form ym(i)=[x(i), x(i+1),…,x(i+(m-1))]. The probability that 
the two sub-sequences match for m points (B

m
(r )) and the 

probability of match for m+1 points (A
m+1

(r )), where r is the 
tolerance for accepting matches, give the SE, defined as the 
average over multiple templates of the log ratio of A/B: 

)
)(

)(
ln(),(

1

rB

rA
rmSampEn

m

m 



                          (1) 

In this case, SE was calculated in overlapping windows of 
2 sec, with 1 sec overlap, with m=2 and r=0.25. 

3)  Fractal Dimension 
Fractal Dimension (FD) was computed in windows of 2 

sec, with 1 sec overlap, according with Higuchi’s method 
[Higuchi1988], based on the calculation of L

 
m (k) for a time 

series X, as expressed in equation (2): 
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m (k) represents the normalized sum of absolute 
differences in ordinates of pairs of points, with distance k, 
(with initial point m), and N is the total number of samples of 
the time series X. 

The average of the k values Lm(k) for m=1, 2,…, k is 
calculated as L(k), and the value of fractal dimension is 
calculated by a least-squares linear best-fitting procedure, as 
the angular coefficient of the linear regression of the log-log 
graph of L(k) vs k, with  k = 1, 2,…. , kmax. Here, the value 
kmax=8 has been chosen, as in [2].  

4) Tsallis Entropy 
The probability distribution pf of the EEG signal f(n) is 

calculated in N bins [8]. Tsallis Entropy (TE) is then defined 
as    
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where q can be a positive number. In the limit when 

�→1, TE corresponds to the Shannon entropy. The 

extremum of Ts(q) in case of a uniform distribution pf(j)=1/N 
is: 

 

                                        (4) 
 

The normalized Tsallis Entropy is then the ratio of the 
two, i.e.  

 

q

N

j

q

ff

N

jpjp

qTsExt

qTs
qTsNorm













1

1

1

)()(

)(

)(
)(

                       (5) 

Here, two values of q are considered, q=0.5 and q=3, 
reflecting a focus on rare and frequent events, as TS1 and 
TS2, respectively.  

B. Statistical Test 

For each group (Sub1 to Sub4) three windows were 

available (sk, sk-1, sk-2 or sk,  sk+1, sk+2). The Kruskal-Wallis 

(KW) statistical test was used to compare among windows in 

each group. A p-value of 5% was used to define statistical 

significance. While KW was used to reject the global null 

hypothesis, a multiple comparison procedure was also 

employed to determine which means differ significantly in a 

pairwise manner. Bonferroni correction was used for 

multiple comparisons. 

III. RESULTS 

Table I shows the mean and standard deviation of the 
computed measures for the different subtypes of Phases A at 
the onset and offset. Most of the measures (LZ indices, 
SampEn, FD, TS1 and TS2) present statistical differences (p-
value < 0.05) in all the subgroups (Sub1-Sub4) between sk 
and sk-2, sk and sk-1 but not between sk-1 and sk-2. For the offset, 
LZ indices, SampEn, FD, TS1 and TS2 present statistical 
differences (p-value < 0.05) in all the subgroups (Sub1-Sub4) 
between sk and sk+2, sk and sk+1, but not between sk+1 and sk+2.  

Figure 2 shows the boxplots of the SampEn measure 
windows for Sub1 during the onset and offset segments of the 
activations. The LZ2 index shows smaller values (p-value < 
0.05) during the activation window than during the 
background windows, which means a reduced complexity. 

IV. DISCUSSION 

EEG signal properties at the onset and offset of the cyclic 
alternating pattern components were analyzed.  Our main 
observations were a) at the onset, the TD1 and SampEn are 
the main properties to differentiate the background from the 
phase A and b) differences at the offset between the phase A 
and background are less clear.  

It is very common to find an increment in the EEG 
amplitude at the onset of the Phases A. Thus this could means 

that most of the Phases A begin with an episode of high EEG 
synchronization.  

 

 

Figure 2. The distributions of SampEn per window during starting (A) 
and ending (B) cases. 

 

Presently, a quantitative definition of Phases A does not 
exist, thus, a clear characterization of the phase A and its 
different subtypes is needed. Some studies have studied the 
phases A subtypes using different features [5-6] such as 
frequency content and variance; however, these studies do 
not focus on the onset and offset of the phase A subtypes. 
Only Ferri et. al. have studied this issue via spectral analysis, 
where they concluded that the spectral components of phases 
A and background are different. In addition, Ioanna et. al. 
complexity features have been employed, and different levels 
of complexity were found with activation type and sleep 
stage.  

The reduced number of patients is the main limitation in 
this study. It is important to analyze large databases to obtain 
a better generalization. Furthermore, only healthy subjects 
were analyzed, therefore, a necessary extension is the 
exploration of the activation properties in pathologic cases 
such as insomnia and sleep apnea.  

V. CONCLUSION 

Clear changes with respect to the EEG background are 

observed in the onset and offset points of the Phase A 

activations in CAP sequences, and these changes can be 

characterized by means of complexity measures, such as the 

Lempel-Ziv index. This suggests that neural synchronization 

could be the major mechanism in the generation of the CAP 

phenomenon. This study constitutes a step towards 

developing an automatic CAP detection procedure. 
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Table I. Mean and standard deviation of the measurements at the change points of Phases A 

Starting points 

  Sub1-S1-S2 Sub2-S1-S2 Sub3-S1-S2 Sub1-S3-S4 

Index sk-2 sk-1 sk sk-2 sk-1 sk sk-2 sk-1 sk sk-2 sk-1 sk 

LZ2  
#w 23.33±1.9 23.26±2 21.89±2.01 23.49±2 23.62±2.1 22.27±2.1 23.87±2 23.99±2 23.10±2 21.35±2 21.37±2 19.69±2 

   *&   *&   *&   #*& 
LZ2 

ind 0.90±0.07 0.89±0.08 0.84±0.08 0.90±0.08 0.91±0.08 0.85±0.08 0.92±0.08 0.92±0.08 0.89±0.08 0.82±0.09 0.82±0.09 0.76±0.10 

   *&   *&   *&   #*& 
LZ3 

#w 25.89±2.3 25.93±2.4 25.88±2.7 26.04±2.4 26.3±0.08 26.3±0.08 26.41±2.4 26.55±2.3 26.32±2.7 31.87±2.6 32.00±2.5 31.35±2.7 

      +      #*& 

LZ3 ind 0.63±0.06 0.63±0.06 0.63±0.07 0.63±0.06 0.64±0.06 0.64±0.07 0.64±0.06 0.64±0.06 0.64±0.07 0.77±0.07 0.77±0.06 0.76±0.07 

      +      #*& 

SampEn 0.92±0.19 0.68±0.25     0.57±0.19 0.94±0.22 0.65±0.25 0.60±0.22 0.79±0.26 0.75±0.28 0.81±0.29 0.65±0.21 0.53±0.20 0.45±0.17 

   +*&   +*&   +&   #+*& 

FD 1.42±0.09 1.36±0.09 1.31±0.08 1.43±0.10 1.36±0.09 1.33±0.09 1.44±0.11 1.41±0.11 1.42±0.13 1.29±0.08 1.25±0.08 1.23±0.08 

   +*&   +*&   +*   #+*& 

TS1 0.35±0.068 0.45±0.08 0.53±0.06 0.34±0.07 0.45±0.08 0.53±0.07 0.34±0.07 0.42±0.09 0.48±0.10 0.46±0.07 0.51±0.06 0.55±0.06 

   +*&   +*&   +*&   #+*& 

TS2 0.49±0.00 0.49±0.00 0.57±0.19 0.493±0.0 0.496±0.0 0.498±0.0 0.493±0.0 0.495±0.0 0.496±0.0 0.497±0.0 0.497±0.0 0.498±0.0 

   *&   +*&   +*&   #*& 

Ending points 

 Sub1-S1-S2 Sub2-S1-S2 Sub3-S1-S2 Sub1-S3-S4 

Index sk+2 sk+1 sk sk+2 sk+1 sk sk+2 sk+1 sk sk+2 sk+1 sk 

LZ2 
ind 0.90±0.08 0.91±0.08 0.86±0.08 0.91±0.08 0.92±0.07 0.88±0.08 0.94±0.07 0.94±0.07 0.92±0.07 0.84±0.08 0.85±0.08 0.81±0.09 

      *&   *&   #*& 
LZ3 

#w 26.13±2.58 26.36±2.4 26.11±2.5 26.52±2.3 26.47±2.3 26.08±2.4 26.82±2.2 26.82±2.2 26.16±2.1 25.66±2.4 25.75±2.5 25.68±2.5 

      *&   *&   # 

LZ3 ind 0.63±0.06 0.64±0.06 0.63±0.06 0.64±0.06 0.64±0.06 0.63±0.06 0.65±0.05 0.65±0.05 0.63±0.05 0.62±0.06 0.62±0.06 0.62±0.06 

      *&   *&   # 

SampEn 0.92±0.18 0.80±0.21 0.64±0.20 0.97±0.18 0.89±0.22 0.81±0.23 1.06±0.21 1.06±0.23 1.10±0.26 0.64±0.20 0.58±0.19 0.48±0.17 

   +*&   +*&   *&   #+*& 

FD 1.41±0.09 1.39±0.09 1.34±0.08 1.43±0.09 1.42±0.10 1.40±0.10 1.47±0.11 1.48±0.12 1.50±0.13 1.30±0.08 1.29±0.08 1.26±0.08 

   +*&   *&   *&   #+*& 

TS1 0.33±0.068 0.38±0.08 0.47±0.08 0.31±0.06 0.35±0.07 0.41±0.08 0.30±0.07 0.32±0.07 0.34±0.07 0.43±0.08 0.46±0.08 0.51±0.07 

   +*&   +*&   +*&   #+*& 

TS2 0.493±0.0 0.494±0.0 0.497±0.0 0.491±0.0 0.493±0.0 0.495±0.0 0.490±0.0 0.491±0.0 0.493±0.0 0.496±0.0 0.497±0.0 0.498±0.0 

   +*&   +*&   +*&   #+*& 

Sub1 –S1-S2 means phase A subtype 1 during sleep stages 1 and 2, Sub2 –S1-S2  is phase A subtype 2 during sleep stages 1 and 2, Sub3 –S1-S2  
stands for phase A subtype 3 during sleep stages 1 and 2, Sub4 –S3-S4  means phase A subtype 1 during sleep stages 3 and 4. LZ2 #w is the number 

of words found by the Lempel-Ziv algorithm in a binary string. LZ3 #w is the number of words found by the Lempel-Ziv algorithm in a ternary 

string. + symbol means statistical difference between sk+1 and sk+2, * symbol represents  statistical difference between sk and sk+2 and & symbol is for 
statistical deference between sk and sk+1. p-value was 5%. # symbol denotes that activation type 1 (during sk)presents statistical differences (p-

value=0.01)between the sleep stages 1-2 and 3-4. Please note that a std equal to 0.0 or 0.00 a mean  value lower than 0.005.  
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