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Abstract—Recently, much attention has been paid to the use of 

nonlinear analysis techniques for the characterization of 

biological signals. Several measures have been proposed to 

detect nonlinear characteristics in time series. The sensitivity of 

several nonlinear methods to the actual nonlinearity level and 

their sensitivity to noise have never been evaluated. In this 

paper we perform this analysis for four methods that are 

widely used in nonlinearity detection: Time reversibility, 

Sample Entropy, Lyapunov Exponents and Delay Vector 

Variance. The evolution of methods with complexity degree 

(CD) and with different Signal to Noise Ratio was computed for 

the four methods on nonlinear synthetic signals. The methods 

were then applied to real uterine EMG signals with the aim of 

using them to distinguish between pregnancy and labor signals. 

The results show a clear superiority of the Time reversibility 

method, in classification of pregnancy and labor signals. 

I. INTRODUCTION 

ne of the most common ways of obtaining information 

about neurophysiologic systems is to study the features 

of the signal(s) by using time series analysis techniques. 

They traditionally rely on linear methods in both time and 

frequency domains [1]. Unfortunately, these methods cannot 

give any information about nonlinear features of the signal. 

Due to the intrinsic nonlinearity of most biological systems, 

these nonlinear features may be present in physiological 

data. Recently, much attention has been paid to the use of 

nonlinear analysis techniques for the characterization of 

biological signal [2]. Indeed, this analysis gives information 

about nonlinear features of these signals, raised from the 

underlying nonlinear processes of physiological mechanisms 

of most biological systems. The uterus is a very poorly 

understood organ. It is deceptively simple in structure but its 

behavior, as observed by EMG, when it moves from 

pregnancy towards labor, indicates that there are numbers of 

interconnected control systems involved in its functioning 

(electric, chemical, mechanical). When working together, 

they give rise to the nonlinear character observed in the 

EHG. There is a growing literature reporting non linear 

biosignal analysis such as EEG [3], ECG [4], HRV [5], 

EMG [6] and EHG [7]. 

Several applications of nonlinear analysis methods have 

been done on the uterine EMG signals. We can cite here the 

comparison between Approximate Entropy, Correntropy and 
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Time reversibility [7], the use of Sample Entropy [8] and the 

use of Detrended Fluctuation Analysis [4]. In most of these 

studies the authors have reported some practical 

disadvantages of the methods like the huge calculation time 

due to the use of surrogates analysis, or promising but 

inconclusive results due to the small database available. 

Sensitivity analyses and robustness study of non-linearity 

measures, which is the main objective of this paper, are rare 

in the literature. 

Four methods: Time reversibility [9], Sample Entropy [8], 

Lyapunov Exponents [10] and Delay Vector Variance [11] 

were used in the this work. Sensitivity analysis of these 

methods to the complexity degree (CD) of signal and 

robustness analysis were made on synthetic signals where 

the CD is controlled. Finally, the methods were applied to 

real EHG signals for use in differentiation between 

pregnancy and labor contractions. This paper presents the 

comparison of methods and concludes that Time 

reversibility method is the best of the four methods in 

classifying pregnancy and labor EHG. 

II. MATERIAL AND METHODS 

A. Data 

 

1. Synthetic signals 

To study the evolution of methods, we used the Henon 

synthetic model to generate nonlinear stationary signals 

where CD is controlled. 

The Henon map is a well-known two-dimensional discrete-

time system given by 

         
          

          
Where Yt , Xt represent dynamical variables, CD is the 

complexity degree and c is the dissipation parameter. In this 

paper we use c=1 [12] and CD ϵ [0, 1] to change the model 

complexity [13]. The number of points is fixed at 1000. 

In the robustness analysis, we add to the synthetic signal 

white Gaussian noise with the same duration, once with a 

fixed 5db SNR, with CD varying between 0 and 1, then with 

variable levels 1db, 2db, 5db, 10db, 100db, with CD fixed to 

0.8. 

 

2. Real signals 

The methods used here are “monovariate” in that we used 

only one bipolar channel from the 4*4 recording matrix 

located on the women's abdomen. This channel is located on 

the median vertical axis of the uterus (see [14] for details). 

The signal was recorded on women in France and in Iceland. 
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In Iceland we recorded signals on 22 women: 11 recorded 

during pregnancy (33-39 week of gestation) and 11 during 

labor (39-42 week of gestation). The measurements were 

performed at the Landspitali University hospital, following a 

protocol approved by the relevant ethical committee (VSN 

02-0006-V2). The sampling frequency was 200 Hz. 

In France we recorded signals on 27 women: 25 recorded 

during pregnancy (33-39 week of gestation) and 2 during 

labor (39-42 week of gestation). The measurements were 

performed at the Center of Amiens for Obstetrics and 

Gynecology, following a protocol approved by the local 

ethical committee. The sampling frequency was 256 Hz. 

The EHG signals were segmented manually to extract 

segments containing uterine activity bursts. After 

segmentation we got 115 labor bursts and 174 pregnancy 

bursts. The analysis below was applied to these segmented 

uterine bursts. 

 

B. Methods 

 

1. Time reversibility 

 

A time series is said to be reversible only if its probabilistic 

properties are invariant with respect to time reversal. Time 

irreversibility can be taken as a strong signature of 

nonlinearity [7]. In this paper we used the simplest way, 

described in [9] to compute time reversibility for signal: 

  ( )  (
 

   
) ∑ (       )

 

 

     

 

where N is the signal length and is the time delay. 

 

2. Sample Entropy 

 

Sample Entropy (SampEn) is the negative natural logarithm 

of the conditional probability that a dataset of length N, 

having repeated itself for m samples within a tolerance r, 

will also repeat itself for m+1 samples. Thus, a lower value 

of SampEn indicates more regularity in the time series. We 

used the way, described in [8] to compute SampEn: 

For a time series of N points, x1, x2, . . . ,xN ,we define 

subsequences, also called template vectors, of length m, 
given by: yi(m) = (xi, xi+1,..., xi+m−1) where i = 1, 2,...,N-m+1. 

Then the following quantity is defined:   
 ( ) as (N-m-1)

−1 

times the number of vectors   
  within r of   

 , where j 

ranges from 1 to N-m, and j≠i to exclude self-matches, and 

then define: 
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Similarly, define   
 ( ) as (N-m-1)

-1 
times the number of 

vectors   
    within r of   

   , where j ranges from 1 to N-

m, where j≠i, and set 

  ( )  
 

   
∑   

 ( )

   

   

 

The parameter SampEn(m,r) is then defined as 

      {   [ 
 ( )   ( )⁄ ]}, which can be estimated by 

the statistic: 

 

      (     )     [  ( )   ( )⁄ ] 
 
N is the length of the time series, m is the length of 

sequences to be compared, and r is the tolerance for 

accepting matches. 

 

3. Lyapunov Exponents 

 

Lyapunov exponent (LE) is a quantitative indicator of 
system dynamics, which characterizes the average 
convergence or divergence rate between adjacent tracks 
in phase space. We used the way, described in [10] to 

compute LE: 
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Where       and      represent the Euclidean 

distance between two states of the system respectively 

to an arbitrary time t0 and a later time t. 

 

4. Delay Vector Variance 

 

The delay vector variance (DVV) method is used for 

detecting the presence of determinism and nonlinearity in a 

time series and is based upon the examination of local 

predictability of a signal. We use the measure of 

unpredictability     described in [11]: 

A time series can be represented conveniently in phase space 

by using time delay embedding. When time delay is 

embedded into a time series, it can be represented by a set of 

delay vectors (DVs) of a given dimension. If m is the 

dimension of the delay vectors then it can be expressed as 

X(k) =[x (k-mτ) …x (k-τ)], where τ is the time lag. Now for every 

DV X (k), there is a corresponding target, namely the next 

sample xk. A set βk (m, d) is generated by grouping those 

DVs that are within a certain Euclidean distance (d) to DV 

X(k). This Euclidean distance will be varied in a manner 

standardized with respect to the distribution of pair wise 

distances between DVs. Now for a given embedding 

dimension m, a measure of unpredictability σ
*2

 (target 

variance) is computed overall sets of βk. 

The mean μd and the standard deviation σd are computed 

over all pair wise Euclidean distances between DVs given by 

‖ ( )   ( )‖ (   ). The sets βk (m, d) are generated such 

that    { ( ) ‖ ( )   ( )‖   } i.e., sets which consist 

of all DVs that lie closer to X(k) than a certain distance d, 

taken from the interval [μd-nd*σd; μd+nd*σd] where nd is a 

parameter controlling the span over which to perform DVV 

analysis. 

For every set βk (m, d) the variance of the corresponding 

targets σk
2
(m, d) is computed. The average over the N sets 

βk(m, d) is divided by the variance of the time series signal 
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 , σk gives the inverse measure of predictability, namely 

target variance σ*
2
.  

    
(  ⁄ )∑   

  
   

  
  

 

We note that the delay and the dimension of the phase space 

are computed automatically by the mutual information [15] 

and the false nearest neighbors [16] methods respectively. 

III. RESULTS 

A. Results on synthetic signals 

Here we study the evolution of the four methods with 

variable complexity of synthetic signal, with and without 

noise. So we plot the value returned by the methods in 

function of complexity of signal in both cases. 
 

 
Fig. 1.Evolution of the four methods in function of the complexity of signal 
generated by the Henon model without noise, plotted with variance bars. 

 

 
Fig. 2.Evolution of the four methods in function of the complexity of the 

signal generated by Henon model with noise: SNR=5 db, plotted with 

variance bars. 
 

In both figures the x-axis is the complexity degree of the 

Henon model ranging from 0 to 1, the y-axis is the value 

yielded by the method. It is clear from the results that in the 

case with no noise the four methods evolve well and 

increase in relation to complexity (fig. 1). In this case, all 

methods present an acceptable sensitivity to varying 

complexity, the best ones being Lyapunov Exponents and 

Time reversibility. Indeed, they present a greater slope of 

evolution with varying complexity, than Sample Entropy 

and DVV. But, in terms of variance, Time reversibility 

method reveals more precision than Lyapunov exponents as 

evidenced with the variance bars in figure 1. 

In the presence of intense noise (SNR 5dB) (fig. 2), only the 

Time reversibility method still reflects the underlying 

change in the complexity of the signal with a very low 

variance. However it appears that the slope of the curve 

(sensitivity) of Time reversibility method in noisy case (fig. 

2) is lower than the slope (sensitivity) in normal case (fig. 1). 

 

 
Fig. 3.A logarithmic plot of the mean square error of the four methods as 
a function of Signal to Noise Ratio for synthetic signals generated by the 

Henon model: SNR=[1,2,5,10,Inf]. 

 

We also investigated the effect of noise on the stability and 

accuracy of these methods. Figure 3 shows the logarithm of 

the MSE of the methods (y-axis) with different SNR 

(logarithm of Signal to Noise Ratio, x-axis) for synthetic 

signals generated by Henon model. The complexity degree 

of the model is 0.8 in all cases. 

We observe on figure. 3 that with the change of SNR, the 

MSE of DVV and Lyapunov Exponents methods have 

approximately the same appearance: they remain constant 

when SNR changes. Time reversibility and Sample Entropy 

decrease when SNR increases. The Sample Entropy begin 

with a very low MSE = 2.27*10
-4 

at SNR = 1db and 

decreases to reach finally a MSE = 1.32*10
-10

 at SNR = Inf 

(fig. 3). Time reversibility methods start with MSE = 0.0383 

for SNR= 1db and go on decreasing with increasing SNR to 

reach a very low MSE = 3.69*10
-12

 for SNR = Inf (fig .3). 

 

B. Application to real EHG signals 

 

The different methods were applied to real uterine EMG 

signals. The Receiver Operating Characteristic (ROC) 

curves were computed to differentiate between pregnancy 

and labor contractions. The ROC curves obtained with the 

different methods are depicted figure 4. The characteristics 

of all ROC curves are presented in Table I. The best method 

for the prediction of labor is Time reversibility which 

presents highest sensitivity (0.86), specificity (0.72), 

accuracy (ACC) (79.13) and Matthews Correlation 

Coefficient (MCC) (0.588). The performance in correct 

classification of labor increases markedly from Area Under 
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Curve AUC=0.478 with Sample Entropy to 0.842 with Time 

reversibility. 

 

 
Fig. 4.Example of ROC curves obtained for the prediction of labor with the 

four different nonlinear methods. 

 
TABLE I 

COMPARISON OF ROC CURVES FOR LABOR PREDICTION 

Parameter AUC ACC MCC Specificity Sensitivity 

Time reversibility 0.842 79.13 0.588 0.721 0.860 
Sample Entropy 0.478 51.30 0.027 0.382 0.643 

Lyapunov Exponent 0.758 70 0.402 0.643 0.756 

DVV 0.615 59.13 0.182 0.582 0.600 

IV. DISCUSSION 

A comparison between four nonlinear methods (Time 

reversibility, Sample Entropy, Lyapunov Exponents and 

Delay Vector Variance) was done on synthetic signals 

generated by nonlinear stationary model (Henon) in order 

to test their sensitivity to the change in signal complexity, 

in normal and noisy conditions. The originality in this 

work that differs from previous work is the study of the 

evolution of methods with complexity change and of the 

effect of noise on the method sensitivity. For a given level 

of complexity, we also show the effect of different SNR 

on the accuracy of methods. 

  

All four methods were found to reflect correctly the 

increasing complexity of the signals. But time reversibility 

was found to be the least sensitive to noise, both in terms 

of a good sensitivity to complexity evolution for higher 

noise level than the other methods, and also in terms of 

low variance and MSE in the presence of noise. 

In this paper, we also present results obtained by using 

nonlinear methods for labor/pregnancy classification of 

EHG bursts. Comparison between the methods indicates 

that Time reversibility is clearly most able to classify 

correctly pregnancy and labor contractions than the other 

methods. 

As further study, we think that if we adapt the 

surrogates to our signal (Pregnancy, Labor) we can 

increase the classification rate. Therefore, in future work, 

we will compare the results obtained by using surrogate 

data in complement to the application of these methods. 

The present problem with surrogates is the important 

computational cost of the method. 

V. CONCLUSION 

A comparison of different nonlinear methods was 

performed to study their performance and sensitivity to 

signal complexity, with and without noise added to 

synthetic signals. Nonlinear methods were then applied on 

a set of uterine electrical bursts recorded during pregnancy 

and labor. The results indicate that Time reversibility is a 

powerful tool to classify pregnancy and labor signals. This 

may be related to its good sensitivity and to its robustness 

(evidenced on synthetic signals), which makes it a good 

candidate for real, usually noisy, signals. From clinical 

point of view, we will then attempt to use these findings to 

predict normal and then preterm labors. 
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