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Abstract— Finding the electrical conductivity of tissue is
important for understanding the tissue’s structure and func-
tioning. However, the inverse problem of inferring spatial
conductivity from data is highly ill-posed and computationally
intensive. In this paper, we propose a novel method to solve
the inverse problem of inferring tissue conductivity from a
set of transmembrane potential and stimuli measurements
made by microelectrode arrays (MEA). We propose a parallel
optimization algorithm based on a single-step approximation
with a parallel alternating optimization routine. This algorithm
simplifies the joint tensor field estimation problem into a set
of computationally tractable subproblems, allowing the use of
efficient standard optimization tools.

I. INTRODUCTION

Transmembrane potential propagation in biological tissue

results when the ionic concentrations change in either the

intracellular or extracellular domains. Potential propagation

is correlated with the medium’s conductivity, and as a mech-

anism of intercellular communication it plays an important

role in tissue and organ functioning [1]. A classical approach

to modeling spatiotemporal transmembrane potential propa-

gation is based on the generalized cable theory, combined

with dynamic models of ionic concentration gradients. The

bidomain model treats the tissue as two continuous domains,

and is a macroscale model of the electrical behavior averaged

over many cells, taking into account both the intracellular

and extracellular current flows. Although this model has been

used extensively in numerical simulations of the electrical be-

havior of anisotropic myocardiac tissues [2], in neuroscience

it has recently been used for analyzing the non-homogeneity

of the extracellular domain in nerve tissues [3].

In the last few years, much progress has been made

in developing high-resolution microelectrode arrays (MEA)

that allow electrophysiological measurements of biological

tissues with high spatiotemporal resolution [4]. Using this

technology, it is possible to effectively and directly measure

transmembrane potential propagation by parallel measure-

ments of the tissue at different locations. By employing the

biodomain model to analyze the MEA data, we gain a deeper

understanding of the underlying biophysical nature of tissue.
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In this work, we develop a mathematical framework

for solving the inverse problem of estimating the effective

electrical tissue conductivities from a set of electric po-

tentials and stimulus measurements. In particular, we for-

mulate the problem in a system identification framework,

using a parametric model based on the generalized cable

theory. In this framework, experiments are performed by

exciting the system and observing its input/output over a

time interval. Unfortunately, solving this ill-posed inverse

problem is highly complex. Specifically, it suffers from high
dimensionality (as one must estimate the tensor matrix for

each point in space), nonlinearity (due to the nonlinear

extracellular field potential dynamics), and stochasticity (as

the observations are corrupted by noise).

This paper makes two contributions. First, we introduce

a discrete forward model of transmembrane potential based

on a diffusion-reaction model with an anisotropic inho-

mogeneous electrical conductivity-tensor field. Second, we

propose a novel parallel optimization algorithm for solving

the complex inverse problem of estimating the conductivity

tensor field.

II. FORWARD MODEL

To model electrical propagation in biological tissue, we

use the generalized cable approach, namely, the monodomain

approach [5]. In the monodomain model, biological tissue is

reduced to a two- or three-dimensional cell grid, where the

electrical behavior is governed by a set of reaction-diffusion

equations. The diffusion part of this model represents the

spatial evolution of the transmembrane potential in a domain

with changing conductivities. The reaction part models the

voltage-dependent dynamics of the cells. Our system can be

written as follows:

∇ ·D(r)∇v(r, t)︸ ︷︷ ︸
Diffusion

= (1)

am

(
cm

∂v(r, t)

∂t
+ jion(v(r, t),w,φ, t)− jstim(r, t)

)
︸ ︷︷ ︸

Reaction

,

v(r, 0) = v0, (2)

∇v(r, t) · n(r) = 0, r ∈ ∂C, (3)

where t ∈ [0, T ], the spatial vector r belongs to C ⊆ R
p,

the domain C is a bounded Euclidean subset, n denotes

the normal to the boundary, and ∂C is the boundary of

domain C. In this work we consider the 2D case, where

p = 2. Furthermore, jstim(r, t) is the stimulus volume
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current density (A/m3); cm is the membrane capacitance per

unit area (F/m2); am is the surface-to-volume ratio of the

membrane (1/m); and D(r) ∈ S2++ is the positive definite

conductivity tensor. jion(v(r, t),w,φ, t) is the ionic volume

current density (A/m3) of a biological cell, and it can be

chosen to fit a specific dynamic, with w corresponding to

the internal state vector, and φ to the model parameters. For

simplicity, we consider a homogenous cell dynamic in the

tissue; namely, φ is consistent in all the cells (in the results

section, we used the extended FitzHugh-Nagumo (FHN)

equations [6] as a fairly general and simple representation of

a cell’s ionic currents; however, more extensive models can

be used). Eqs. (2) and (3) present the initial temporal and

boundary conditions, respectively. In particular, we use the

homogenous Neumann boundary condition since we assume

that there will be no current through the borders of the

domain, and we use the zero state response for the initial

values since we assume that the system is initially relaxed

at its resting potential v0 and cannot initiate a spontaneous

response.

A. Modeling Tissue Anisotropy

In order to infer the underlying conductivity structure of

the tissue, we represent biological tissue as a continuous field

of conductivity tensors, D(r) in Eq. (1), which models local

extracellular conductivities within the tissue [5]. To simplify

the problem, we consider working with only a thin slice of

tissue that can be represented as a 2D plane. The conductivity

tensor is given by

D(x, y) =

[
σx(x, y) σxy(x, y)
σxy(x, y) σy(x, y)

]
, (4)

where σx(x, y), σxy(x, y), σy(x, y) are the conductivity val-

ues in the horizontal, diagonal, and vertical directions, re-

spectively. The tensor field is an indexed set of tensors in

space, and is referred to as isotropic if all the conductivity

tensors are directionally independent (symmetric), that is,

σx(x, y) = σy(x, y) = σ0 and σxy(x, y) = 0 for all

x, y. Otherwise, if some conductivity tensors in the field are

directionally dependent, it is referred to as anisotropic. If

the conductivity tensors are constant throughout the field,

then the field is referred to as homogeneous; otherwise, it

is inhomogeneous. A diffusion tensor can be expressed in

terms of its eigenvalues λ = (λ1, λ2, λ3) and eigenvectors

E = (e1, e2, e3) as D = ETdiag(λ)E. The tensor can

be represented as an ellipsoid, whose radii (eigenvalues)

represent the amount of diffusion (flow) in each of the main

directions (eigenvectors).

B. Discretization

To transfer our model from a continuous domain into

a discrete vector space formulation, we will to discretize

the continuous diffusion term of Eq. (1), using the Finite-

Difference Method (FDM) with an forward-time central-

space scheme to approximate the derivatives, taking into

account the spatially varying tensor field of Eq. (1). In prac-

tice we observe vn through spatiotemporal measurements

yn ∈ R
Q. Here we will assume that yn are corrupted with an

additive white Gaussian noise of mean zero and variance γ2.

Therefore, the discretized system and measurements model

is given by

vn+1 = f(v0:n,w0:n,φ,Θ) + bun, (5)

yn = vn + ν, (6)

where Θ = {Θ1,Θ2, . . . ,ΘK} is a joint set of K tensors

of the form Θk =

[
σxk σxyk
σxyk σyk

]
at location k. We will

refer to this set Θ as the discrete conductivity-tensor field.

III. SOLVING THE INVERSE PROBLEM

The goal of solving the inverse problem is to estimate

Θ, the discretized tensor field of tissue conductivity, from

the set of measurements y0:T , the set of inputs u0:T , and

the discrete system model in Eqs. (5) (6). Here we use

an indirect method to estimate Θ, by transferring it into

an optimization problem. There are several methods in the

literature to solve this inverse problem, such as the aug-

mented Lagrangian method [7], Initial Value Approach (IVA)

[8], and the patched unscented Kalman filter (PUCF) [9].

However, these methods may not suffice as the augmented

Lagrangian method is highly computationally intensive, the

IVA is very sensitive to initial conditions, and the PUCF

lowers the resolution substantially. As a result, in order to

solve this complex multidimensional inverse problem, we

propose a simpler, nonrecurrent method based on the ideas

of one-step prediction and alternating optimization.

A. One-Step Prediction (OSP)

When dealing with invasive electrophysiological record-

ings, it is acceptable to assume low sensor measurement

noise and use the observed data as a direct measurement

of the average local field potential states, yn ≈ vn [10]. By

using the observations instead of the states, we can write the

discrete system model as

ŷn+1 = f(yn,wn,φ,Θ) + bun. (7)

To then write the OSP score function we use the LS

between the one-step predictions and the measurements,

which is given by

VOSP (y0:N ,w0,u0:N ,φ,Θ) =
N∑

n=1

K∑
k=1

(
yn,k − f

(
yn−1,w0,φ,Θ

)
n,k

− bun,k

)2

. (8)

B. Parallel Alternating Optimization

In the alternating optimization class of algorithms, a com-

plex optimization problem is solved by iteratively solving

a series of easy to handle subproblems. The algorithm

then iteratively cycles through the different subproblems and

updates the parameters in each subset until convergence is

reached. However, even for a modest size grid, the high-

dimensionality of the problem will make the alternating

optimization problem computational expensive as it will have
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to sequentially alternate between many parameter subspaces.

To improve computational costs, we vary the alternate op-

timization algorithm so that instead of sequentially solving

the set of subproblems, we solve them in parallel and join

them after each iteration.
The K optimization routines can be written as

Θ̂
[j]

k ← argminΘk={σxk,σxyk,σyk}
Θk∈S2++

(9)

VOSP

(
y0:N ,w0,u0:N ,φ, Θ̂

[j−1]

i �=k ,Θk

)
+ λd

(
Θk, Θ̂

[j−1]

k

)
,

where λ is the Lagrangian hyper-parameter. The step-size

penalty feature is added to the algorithm to reduce the prob-

ability of the algorithm becoming stuck at a local minimum

that is worse than the global one. The joint parameter set at

iteration j, Θ̂
[j]

, is simply the union of the solutions to the

K optimization problems.
Finally, we use these ideas to write a parallel OSP al-

gorithm (pOSP) which iterates between parallel estimation

of conductivity tensors and estimation of the initial internal

states w0. The full iterative pOSP algorithm is presented in

Alg. 1. 1

Algorithm 1 Parallel OSP

procedure POSP(Θ0,w0
0) � Θ0 ∈ S2++, w

0
0 ∈ R

Θ0
∀k∈K ← Θ0

w0
0 ← w0

01
j ← 0
repeat

j ← j + 1
parfor k ∈ K do

Θ̂
[j]

k ← argminΘk∈S2++

VOSP

(
Θk, Θ̂

[j−1]

i �=k ,w
[j−1]
0 ,y

)
+ λd

(
Θk, Θ̂

[j−1]

k

)
+ h

(
Θk, Θ̂

[j−1]
)

end parfor
ŵ

[j]
0 ← argminw0∈R

V (Θ[j], w0,y)

w
[j]
0 ← ŵ

[j]
0 1

until convergence

return
end procedure

The last term of the argmin is an optional spatial penaliza-

tion function h
(
Θk, Θ̂

[j−1]
)

, which penalizes large spatial

deviations from a priori information of the tissue. Prior

information can be provided from other sources, such as

anatomical data, or from biological knowledge of the tissue

properties, such as smoothness in smooth muscle tissues. For

the spatial penalization function, we choose the following

form:

h
(
Θk, Θ̂

[j−1]
)
=

K∑
k=1

μ
(
L2

xyσx +L2
xyσxy +L2

xyσy

)
, (10)

1Minimization performed using a standard Matlab implementation of the
sequential quadratic programming method.

where L2
xy is the 2D discrete Laplace operator, and μ is the

penalty weight.

IV. RESULTS

To analyze the performance of the pOSP algorithm, we

compiled a number of test simulations to examine the algo-

rithm’s ability to estimate the tensor field of different field

topologies under varying noise levels. For a fairly general

and simple representation of a cell’s ionic current dynamics,

we use extended FitzHugh-Nagumo (FHN) equations. The

values of the reaction parameters for the simulations were

fitted to a slow wave from a pregnant human’s uterine

myocyte, as presented in [5].

A. Step-Size Penalty λ

The hyper-parameter λ, which was introduced in the

previous section, is the weight of the penalty term we added

in order to control the step size of the pOSP algorithm. In

this work we used λ = 10−4, which might be suboptimal

for different problems.

To test the significance of the step-size penalty on the

optimization algorithm, we compared the standard sequential

alternating optimization to the parallel alternating optimiza-

tion, with and without a step-size penalty (λ = 10−4),

for various noise levels. We compared both the accuracy

and the computational time for the algorithms, using ten

iterations on a toy 8 × 8 Gaussian mixture. From Fig. 1,

we can observe that the parallel alternating optimization

algorithm with a step-size penalty (PAOSS) achieves con-

siderably better estimation results than the one without a

step-size penalty. Furthermore, for all tested noise levels, the

PAOSS estimation offers estimation accuracy comparable to

that of the standard alternating optimization algorithm, at a

significantly lower computation time.

B. Richness of Inputs

A fundamental factor in the algorithm’s ability to correctly

identify the spatially varying conductivity-tensor field is

the choice of input signals used to excite the system. The

input must possess sufficient richness in both its spatial

and temporal excitations to guarantee enough spatiotemporal

information to fully identify the system. For our simulations,

we considered three types of spatially varying tensor fields:

constant, Gaussian mix, and circular. To test the improve-

ment of the pOSP conductivity-tensor estimation, we tested

the algorithm with different numbers of stimulations. The

simulations were sequential, with 150 time-steps between

each simulation. In Fig. 2, we present the resulting log mean

squared error between the estimated conductivity tensor field

and the original real field for the three fields, where the

estimated field is considered as a function of the number

of simulations. As the number of stimulations increased,

the MSE monotonically decreased toward zero. Greatest

improvement was achieved when the spatial location of the

new stimulus was significantly different from the previous

stimuli with respect to the field topology. In the Gaussian

case, an increase in MSE can be observed as a result
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Fig. 1. This figure illustrates a comparison between the standard sequential
and parallel alternating optimization algorithms, and the effect of a step-size
penalization.

of interference between sequential stimuli, which in turn

lowered the overall amount of information.

Finally, we tested the pOSP estimation using all five

stimuli (we will refer to an experiment using all five stimuli

as an “all stimuli” experiment) under different noise levels.

We considered three cases: 25dB SNR with no temporal

filtering, 25dB SNR with a low pass sliding window of three

time-steps, and 50dB SNR with no temporal filtering. As

we can observe from the results in Table I, even with high

noise the pOSP can produce good estimates of the original

conductive-tensor fields. Ten runs of the pOSP with differing

initial fields were performed to check whether there were

multiple minima. The results in Table I are from the first

run; all the runs produced almost identical results.

C. Testing on a Real Data

We applied the pOSP method to a normalized data set

from cardiomyocyte tissue of a newborn mouse, recorded at

the Italian Institute of Technology using the high-resolution

4096-channel MEA platform of 3Brain GmbH, Switzerland.

To use the pOSP algorithm, first the optimal reaction

parameters must be inferred from the data. To define the

boundary conditions of the tissue, locations where the sen-

sors had a total cumulative activity less than the threshold

(a) (b) (c)

1 2 3 4 5
1

1.5

2

2.5

3

3.5

4

Number of Stimulations

log
 M

SE

Constant
Gaussian Mix
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Fig. 2. Figs 2(a), 2(b), and 2(c), illustrates constant, Gaussian mix, and
circular conductive fields, respectively. The stimuli positions and order are
also marked. Figure 2 illustrates the effect of an increasing number of stimuli
on the log mean squared error.

TABLE I

RESULTS OF “ALL STIMULI” EXPERIMENTS UNDER DIFFERENT NOISE

LEVELS: I. 25 DB SNR, II. 25 DB SNR WITH TEMPORAL FILTER, AND

III. 50 DB SNR.

Original I II III

C
o
n
st

an
t

G
au

ss
ia

n
C

ir
cu

la
r

were considered to be not conductive, and hence the conduc-

tivity tensors in these locations were set to zero. We used

tensor-volume constraints of [0.3, 2], a spatial penalization

penalty of μ = 10−12, and a step-size penalty λ = 10−4.

The conductivity tensor field was estimated using the pOSP

algorithm and the measurements in the first phase, and is

shown in Fig. 3(c).

Next we checked that our estimated tensor field indeed

significantly improves the model prediction results compared

to using a noninformative tensor field. For the null hy-

pothesis, we calculated the one-step-ahead prediction (OSP)

errors for 30 random tensor fields, and used these results to

find the mean OSP error and confidence interval. In Fig.
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3(d), we note the mean OSP error of random fields as

“Mean Random Tensor Field”, and the confidence interval,

corresponding to 98%, is presented in gray. Further, we also

compared the OSP errors for other noninformative tensors:

an isotropic homogenous field (circles), a zero tensor field

(all tensors set to zero), and a constant tensor field. While

all of the noninformative tensor fields tested were within

the confidence interval of the random fields, we can observe

that for the first 13 ms the estimated tensor field resulted

in an improvement to the OSP error which is statistically

significant (3(d)). After 13 milliseconds, the OSP errors of

the estimated and noninformative fields are relatively equal,

and are within the confidence interval. This effect can be

explained by the changes in both the spatial location of the

wave and the change in dynamics, as explained above (Fig.

3(a)). These changes resulted in the estimated tensor field

from the first phase of the wave becoming noninformative

for the rest of the propagation.

V. CONCLUSION

We formulated a novel method for solving the inverse

problem of inferring the conductivity structure of a bio-

logical tissue from a set of spatiotemporal measurements.

We lowered the complexity of the optimization by using

a single-step approximation employing a parallel alternate

optimization method. This method breaks the original joint

problem into a set of smaller subproblems that are solved

in parallel, and avoids converging to local minima by us-

ing a step-size penalty. We analyzed the performance of

our method using numerical examples of several electrical

conductivity field topologies and noise levels, and discussed

its application to real measurements obtained from a smooth

cardiac mouse tissue slice, using data collected with the

high-resolution 4096-channel MEA platform. This method

main applications are in the study of extracellular domain

conductivities in both muscle and nerve tissues. In the future,

we will consider optimizing model parameter fitting from

the data by employing more advanced learning schemes and

better utilizing prior biological information. Further, we will

extend the model to nonhomogeneous reaction dynamics and

establish a methodology for fusing conductivity tensor field

information from different post-stimulus experiments.
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