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Abstract— The use of complex dynamical models have been
proposed for describing the connections and causal interactions
between different regions of the brain. The goal of these models
is to accurately mimic the event-related potentials observed
by EEG/MEG measurement systems, and are useful in under-
standing overall brain functionality. In this paper, we focus on
a class of nonlinear dynamic causal models (DCM) that are
described by a set of connectivity parameters. In practice, the
DCM parameters are inferred using data obtained by an EEG
or MEG sensor array in response to a certain event or stimulus,
and the resulting estimates are used to analyze the strength
and direction of the causal interactions between different
brain regions. The usefulness of the parameter estimates will
depend on how accurately they can be estimated, which in
turn will depend on noise, the sampling rate, number of data
samples collected, the accuracy of the source localization and
reconstruction steps, etc. The goal of this paper is to derive
Cramér-Rao performance bounds for DCM estimates, and
examine the behavior of the bounds under different operating
conditions.

I. INTRODUCTION

Recent research in understanding brain functionality has

focused on describing the connectivity between different

cortical regions and how these regions interact when execut-

ing certain sensorimotor and cognitive tasks. One approach

to this problem endeavors to find a specific parametric

model that represents the simplest brain circuit that would

produce the same event-related potentials (ERP’s) measured

experimentally by electroencephalography (EEG) or magne-

toencephalography (MEG) systems. In order to do this, one

must postulate a suitable causal model in which the regions

of interest are constrained by a combination of neuroanatom-

ical, neuropsychological and functional neuroimaging data

[1], [2], [3]. Dynamic causal modeling (DCM) [4], [5], [6],

[7] based on the neural mass model of [8] is an example

of this approach. In DCM, the brain is regarded as a

nonlinear dynamical network. Each cortical region in the

DCM network is comprised of three subpopulations linked

by intrinsic connections, and different regions communicate

through extrinsic excitatory forward, backward and lateral

connections. The activity of each cortical area is described

by unobserved state variables and the output of the model is

presumed to be the sources of the EEG/MEG ERPs.

The goal of this paper is to discuss dynamic causal

modeling for brain connectivity from an estimation theoretic
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viewpoint. After presenting the DCM approach in the next

section, we develop a method for obtaining the Cramér-Rao

bound (CRB) [9] for the DCM parameters in Section III.

In general, calculation of the CRB requires evaluation of

the Fisher information matrix, which involves derivatives

of the probability distribution function (pdf) of the mea-

surements with respect to the parameters. However, the

nonlinear differential equation at the heart of DCM does not

admit an analytical description of the effect of the model

parameters on the output, so standard methods cannot be

used. Instead, we calculate the posterior CRB using the

“derivative system” approach in [10]. The results of several

numerical examples are given in Section IV to indicate DCM

estimation performance as a function of signal-to-noise ratio

(SNR) and sampling rate.

II. DYNAMIC CAUSAL MODELING FOR ERP

GENERATION

Following the dynamic model of [8], [5], [6], the activity

of the ith cortical region is described by an eight-element

state vector x(i)(t) = [x
(i)
1 (t) . . . x

(i)
8 (t)]T whose evolution

is governed by the following nonlinear differential equation:

ẋ(i)(t) = f (i)(t)

y(i)s (t) = x
(i)
2 (t)− x

(i)
3 (t),

(1)

where the elements of the vector f (i)(t) =

[f
(i)
1 (t) . . . f

(i)
8 (t)]T are specified as

f
(i)
1 (t) = x

(i)
4 (t),

f
(i)
2 (t) = x

(i)
5 (t),

f
(i)
3 (t) = x

(i)
6 (t),

f
(i)
4 (t) =

He

τe
{

m
∑

j=1;j 6=i

aFijS(y
(j)
s (t− δij))

+
m
∑

j=1;j 6=i

aLijS(y
(j)
s (t− δij)) + ciui(t)

+ γ1S(y
(i)
s (t))} −

2

τe
x
(i)
4 (t)−

x
(i)
1 (t)

τ2e
,
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f
(i)
5 (t) =

He

τe
{

m
∑

j=1;j 6=i

aBijS(y
(j)
s (t− δij))

+
m
∑

j=1;j 6=i

aLijS(y
(j)
s (t− δij))

+ γ2S(x
(i)
1 (t))} −

2

τe
x
(i)
5 (t)−

x
(i)
2 (t)

τ2e
,

f
(i)
6 (t) =

Hi

τi
γ4S(x

(i)
7 (t))−

2

τi
x
(i)
6 (t)−

x
(i)
3 (t)

τ2i
,

f
(i)
7 (t) = x

(i)
8 (t),

f
(i)
8 (t) =

He

τe
{

m
∑

j=1;j 6=i

aBijS(y
(j)
s (t− δij))

+

m
∑

j=1;j 6=i

aLijS(y
(j)
s (t− δij))

+ γ3S(y
(i)
s (t))} −

2

τe
x
(i)
8 (t)−

x
(i)
7 (t)

τ2e
.

The parameters of the differential equation are explained

below. The constant ci represents the strength of the influence

of the input excitation ui(t), which may not be present in

all modeled brain regions. Parameters aFij , aBij , aLij define the

connectivity of the extrinsic forward, backward, and lateral

connections between regions i and j, respectively, while δij
represents the conduction delay between the two regions.

The coupling parameters γ1, . . . , γ4 control the strength of

the intrinsic connections between the three subpopulations

within each brain region, and are proportional to the average

number of synapses between the pyramidal cells and the

excitatory and inhibitory feedback elements. The remaining

constants are relevant to two transformations on which the

system dynamics are based. The first transformation is linear

and converts the average pulse density of the action potentials

arriving at the population of neurons into an average postsy-

naptic membrane potential. In particular, He and Hi control

the maximum postsynaptic potentials, and τe and τi represent

the lumped time constants of the passive membrane and all

other spatially distributed delays in the dendritic network.

The subscripts e and i are used to indicate whether these

potentials are either excitatory and inhibitory, respectively.

The second transformation S(v) is a nonlinear sigmoid

function that converts the average membrane potential of the

given population into an average firing rate for the action

potentials, and is given by [5]

S(v) =
2e0

1 + e(−rv)
− e0 , (2)

where e0 determines the maximum firing rate of the neural

population and r controls the steepness of the sigmoidal

transformation.

For a general DCM network composed of m intercon-

nected brain regions, a network-level model is obtained by

combining together all of the equations for each region into

a single nonlinear differential equation with 8m states:

ẋ(t) = f(t)

y(t) = Cx(t) +w(t) = ys(t) +w(t)
(3)

where x(t) = [(x(1)(t))T . . . (x(m)(t))T ]T and f(t) =
[f (1)(t)T . . . f (m)(t)T ]T represents the network state vector

and its derivatives, u(t) ∈ R
m×1 contains the external

inputs to each region (some of which may be zero), and

y(t) ∈ R
m×1 represents the measured ERPs for each region

in the presence of measurement noise w(t) ∈ R
m×1. In

deriving the CRB, we will assume that w(t) is zero-mean

Gaussian with independent elements of equal variance σ2.

The noise free ERPs are represented as ys(t) = Cx(t) =

[y
(1)
s (t) . . . y

(m)
s (t)]T ∈ R

m×1, where C ∈ R
m×8m is a

constant matrix having with nonzero elements only in the

following locations: Ci,8(i−1)+2 = 1 and Ci,8(i−1)+3 =
−1 for i = 1, . . . ,m. Associated with the nonlinear state

equations in (3) are a set of parameters represented by

the vector θ. This vector contains the unknown extrinsic

parameters aFij , a
B
ij , a

L
ij , δij , ci for each cortical region i and

every region j to which i is connected.

III. CRB FOR ESTIMATION IN NONLINEAR SYSTEMS

Let Y = [y(t1) . . .y(tN )] ∈ R
m×N represent a matrix

containing the ERPs for each of the m regions over N time

samples. Assume the parameter vector θ has n elements and

denote the joint pdf of the data and parameters as p(Y,θ).
According to the CRB, a lower bound for the variance of an

unbiased estimator θ̂ = q(Y) is given by

V ≡ E
{

[q(Y)− θ][q(Y)− θ]T
}

≥ J−1, (4)

where the Fisher information matrix (FIM) J is n× n with

elements

Jij = E

{

−
∂2 ln p(Y;θ)

∂θi∂θj

}

i, j = 1, . . . , n . (5)

Calculation of the FIM involves derivatives of a function of

the nonlinear system outputs with respect to the parameters.

Since an analytical expression for the DCM system output

in terms of the parameters does not exist, these derivatives

cannot be evaluated directly. Instead, we resort to the ap-

proach of [10], which shows that the FIM for a data set

generated by a nonlinear system with additive Gaussian

measurement noise can be expressed in terms of the outputs

of its derivative system, which is also described by a set of

nonlinear differential equations.

The derivative system for the DCM model in (3) is given

by

Ẋ (t) = F(t)

Yθ(t) = CX (t),
(6)
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for t ≥ t0, where

X (t) =

[

xT (t)
∂xT (t)

∂θ1
. . .

∂xT (t)

∂θn

]T

∈ R
8m(n+1)×1,

F(t) =













f(t)
∂f(t)
∂θ1

+MJ(t)
∂x(t)
∂θ1

...
∂f(t)
∂θn

+MJ(t)
∂x(t)
∂θn













∈ R
8m(n+1)×1,

Yθ(t) =









∂y(1)(t)
∂θ
...

∂y(m)(t)
∂θ









=









∂(x
(1)
2 (t)−x

(1)
3 (t))

∂θ
...

∂(x
(m)
2 (t)−x

(m)
3 (t))

∂θ









∈ R
mn×1.

The matrix C is defined implicitly from the expression for

Yθ(t) and MJ (t) ∈ R
8m×8m is the Jacobian matrix of f(t)

with respect to x. Once the derivative system is defined and

initialized, standard numerical integration methods can be

used to generate samples of the output and the FIM can

then be obtained through

JD =
1

σ2

N
∑

j=1

m
∑

i=1

PiYθ(tj)Y
T
θ (tj)P

T
i ∈ R

n×n , (7)

where Pi ∈ R
n×mn is defined as

Pi =
[

0(1) · · ·0(i−1) In 0(i+1) · · ·0(m)
]

,

with 0(i) being the ith n×n zero matrix and In is an n×n
identity matrix.

Fig. 1. A plausible DCM network for the auditory oddball paradigm.

IV. SIMULATIONS AND DISCUSSIONS

A. Simulation Setup and Parameters

To study the behavior of the DCM CRB, a DCM network

[11] for investigating the underlying mechanism of the

mismatch negativity (MMN) appearing in auditory oddball

paradigm is adopted and depicted in Figure 1. Five lumped

neural sources are assumed in this model (m = 5), two

associated with the left and right primary auditory cortices

(A1), two with the left and right superior temporal gyrus

(STG) and one for the right inferior frontal gyrus (IFG).

The model only includes the right-hemisphere IFG since

it is reported to consistently produce stronger responses

than the left IFG [11]. The audio cortices A1 (regions 1

and 5) receive the external audio stimulus from the ear

canal via connections with unknown strength c1, c5. In the

most general setting with all possible connections active,

the audio cortices are linked to their respective ipsilateral

STG (regions 2 and 4) with distinct forward and backward

connection parameters aF21, a
B
12, a

F
45, a

B
54, and the conduction

delays δ21, δ12, δ45, δ54 are assumed to be the same and

equal to δ1 for both pathways. The right STG is connected

to the IFG with parameters aF32, a
B
23 and conduction delay

δ23 = δ32 = δ2. Inter-hemispheric or lateral connections

between the left and right STG are defined by the parameters

aL42 = aL24 = aL and δ24 = δ42 = δ3 (note that the forward

and backward lateral connection strengths are assumed to

be equal in the simulation since they exert much weaker

effects on the system responses than forward and backward

connections).

The parameter vector θ of this DCM network is

θ =
[

aF21 aF32 aF45 aB12 aB23 aB54 c1 c5 aL δ1 δ2 δ3
]T

,

and Table I shows the value of the elements of θ used in our

simulation, which were tuned so that the the model generated

ERP waveforms similar to those shown in [11]. Other DCM

parameters were chosen to be similar to those used in prior

work [8], [5], [6]: He = 3.5mV , Hi = 32mV , τe = 10ms,

τi = 15 ms, γ1 = 50, γ2 = 40, γ3 = γ4 = 12.5,

e0 = 2.5 s−1, r = 0.56 mV −1. The input signal to the

audio cortices was a pulsed signal with a 70 ms duration and

5 ms rise and fall times, as depicted in Figure 1. The SNR in

the results that follow is defined as ‖Ys‖
2
F /‖W‖2F , where

Ys = [ys(1), . . . ,ys(N)] and W = [w(1), . . . ,w(N)]
represent the samples of the noise-free ERPs and the noise,

respectively. In the results that follow, the SNR was varied

from 5 to 20 dB. The DCM dynamic system and its derivative

system were integrated using a fourth-order Runge-Kutta

technique with an integration time-step specified by the

sampling rate used with data collected during a 0.25 second

time window.

B. Results and Discussions

Simulations in the first example were conducted with SNR

varying from 5 to 20 dB and the sampling rate set at 1 kHz.

The normalized CRB for each parameter, which is defined

as the square root of the corresponding entry in the inverse
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TABLE I

VALUES OF DCM NETWORK PARAMETERS USED IN SIMULATING THE

AUDITORY ODDBALL PARADIGM.

Para. aF
21

aF
32

aF
45

aB
12

aB
23

aB
54

value 40.56 61.42 31.75 8.67 13.81 8.81

Para. c1 c5 aL δ1 δ2 δ3

value 21.32 59.92 5.11 7.66 11.53 12.64

of the FIM divided by the value of the parameter itself,

is provided in Figure 2. As expected, a decrease in SNR

leads to an increase in the CRB and thus the root mean-

squared error (RMSE) of any unbiased estimator. Among the
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Fig. 2. Normalized CRB with 1 kHz sampling rate.
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Fig. 3. Normalized CRB with 10 dB SNR.

elements of θ, δ3 seems to be difficult to estimate accurately;

for example, at an SNR of 5dB, the RMSE is larger than the

value of δ3 itself. In the second example, simulations were

conducted with sampling rates varying from 200 to 1000 Hz

and 10 dB SNR and the resulting CRB is plotted in Figure 3.

We see that a reduction in sampling rate by a factor of five

leads to an increase in the CRB of about a factor of two. It

is clear from these examples how the CRB could be helpful

in determining when meaningful inference could be made

about the brain’s behavior from the DCM estimates.

V. CONCLUSIONS

We have presented a nonlinear DCM framework for gen-

eration of EEG/MEG ERPs and applied this framework for

investigating the mechanism of the MMN observed in the

auditory oddball paradigm. Under the DCM framework, the

MMN can be inferred as being due to changes in forward

and backward connections within the primary auditory cortex

compared to those present under standard stimuli. However,

to make such an inference, the ability to estimate the DCM

parameters is required, which results in a nonlinear system

identification problem. To address the question of how ac-

curately the DCM parameters can be estimated, we derived

the CRB for the DCM estimation problem, which required

the definition of the derivative system associated with the

DCM since it is impossible to explicitly express the log-

likelihood in terms of the model parameters. The behavior

of the CRB was studied as a function of SNR and sampling

rate for the particular case of a DCM proposed for oddball

auditory stimuli.
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