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Abstract² Rationale. The goal of this study is to evaluate the 

electroencephalographic (EEG) events, prior to clonic phases of 

epileptic motor seizures. Analyzing video sequences we were 

able to detect these special phases of motor seizures, by image 

features. This can be used for an early detection and alerting 

for these events. In the study we analyzed 42 seizures. Based on 

collected data we compare the quantitative results from video 

detection of seizures with the features computed from EEG 

scalp recordings from about 3 minutes prior to the seizure. We 

analyze the non-stationary frequency spectrum of the EEG 

recordings and match it against our automated video detection 

output in order to investigate possible precursory EEG events. 

Methods. Video recordings are analyzed by applying optical 

flow theory, reconstruction of geometrical flow invariants, low 

and high pass filtering, and suitable normalizations. EEG 

recordings are processed with use of a Gabor wavelet 

technique. Comparison is achieved by means of analysis of the 

cross-correlation function between the derivatives of the Gabor 

DPSOLWXGHV�DQG�WKH�PHDVXUH�RI�³VHL]XUHQHVV´�SURGXFHG�E\�RXU�

video detection algorithm. Results. In the present study certain 

ranges of EEG frequencies were found, where electro-graphical 

events precede clonic phases of clinical motor seizures from 2-8 

up to 30-40 seconds. These results could be used for 

construction of new generation of methods for automated 

motor seizure detection. 

I. INTRODUCTION 

Epilepsy is a clinical condition of the central nervous 
V\VWHP�WKDW�FDQ�EH�GHVFULEHG�DV�³G\QDPLF´�[1, 2] in the sense 
that patients are most of the time without any apparent 
abnormal symptoms but suddenly may get attacks or seizures 
impairing partially or entirely their normal functions. From 
the different types of seizures the motor ones are those that 
display the most dramatic behavior and may pose a hazard to 
WKH�SDWLHQW¶V�safety. )RU�H[DPSOH�³FORQLF´�DQG�³hyperkinetic´ 
motor seizures [3] can last for long periods and cause severe 
physical injuries if the patient is not attended and helped soon 
after the seizure onset. The idea of the present study is to find 
specific electro-graphical markers that may help to identify 
WKH�PDMRU�PRWRU�VHL]XUH¶V��006��SKDVH��7KHUHIRUH�NQRZLQJ�
WKH� H[DFW� SRVLWLRQ� LQ� WLPH� RI� WKH� VHL]XUH¶V� ³FORQLF´� SKDVH��
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may be used to process EEG recordings, backwards in time, 
and to find certain signal characteristics, predicting the motor 
phase. We applied a detection algorithm on video data, based 
on optical flow vector field, which reconstructs velocities of 
recorded objects from the image intensity changes. Further 
reconstructed vector fields were decomposed into a group of 
linear transformations of the plane velocities, and band-pass 
temporal filtering was applied. The algorithms are 
constructed in feed-forward processing mode what allows 
their implementation in real-time systems. In this way the 
³FORQLF´� RU� ³hyperkinetic´ seizure phase could be detected 
successfully. Furthermore we analyzed the EEG recordings 
using similar decomposition methods, 200 seconds 
backwards from the point of major motor seizure detection 
(MMS), and we found statistically significant changes of 
certain EEG frequency components, prior to the video clonic 
phase detection. To validate the results we considered as a 
³JROGHQ� VWDQGDUG´� WKH� GHWHFWLRQV� RI� HYHQWV� LQYROYLQJ�0MS 
provided by two coauthors experienced clinicians (Demetrios 
Velis (DV) and Ben Vledder (BV)). In this work we do not 
attempt to validate or quantify the performance of the EEG 
based features as an early seizure detector. Our objective here 
is to identify the EEG frequency components, which may be 
potential candidates for ³SUHGLFWLQJ´� early MMS detection 
using EEG signals. A more dedicated analysis requires 
different validation tests in view of a potential practical 
application and will appear in a forthcoming publication. 

II. PATIENT DATA AND SIGNAL PROCESSING STEPS 

A. Patient and data acquisition 

We used scalp records from routine diagnostic EEG and 
video observation facility[4]. EEG data were recorded using 
Stellate Harmonie® acquisition systems with LanNotta® 
ambulatory EEG recorders. The EEG recordings were always 
sampled at 200Hz and only 21 channels common to all 
recordings were analyzed. The data from 30 patients with 
known motor seizures contained segments of synchronized 
EEG and video sequences ranging from 12 to 56 minutes. 
One or more seizures per patient were identified in the 
sequences by certified clinicians (DV and BV) and the 
EHJLQQLQJ�DQG�HQG�RI�HDFK�³FORQLF´�´K\SHUNLQHWLF´�SKDVH�ZDV�
determined from the video and EEG records. A total of 42 
seizure periods were identified with a total duration of 45 
minutes. The total length of the analyzed records was 746 
minutes. 

B. Data processing steps 

Using markers for the identification of the beginning and 
WKH�HQG�RI�WKH�VHL]XUH�³FORQLF´�SKase, we marked these events 
on video recordings. This yield a series of video segments, 
each one of which contained RQH�VHL]XUH�³FORQLF´�SKDVH. We 
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applied the video detection algorithm to these segments. In 
general this algorithm is based on averaging optical flow over 
the whole image, i.e. on the reconstruction of motion vector 
fields from the changes of intensity of light. Next we 
reconstruct the group of six motion invariant parameters that 
include: two translations, one rotation, one dilatation, and two 
shear transformations velocities. To WKHVH� ³UHVXOWLQJ´� VL[ 
parameter signals we apply low and high pass filters, and 
appropriate normalization in order to extract only the 
frequencies between 2 and 6 Hz, since the latter likely result 
from seizure driven movements. Using simply the average 
value of these six parameters, or some special combination of 
these values, one can define a function, by means of which 
WKH� GHJUHH� RI� ³VHL]XUHQHVV´� of the observed scene may be 
quantified. In the present study we used the average value of 
all six parameters. Once we detect the maximum of the 
³VHL]XUHQHVV´� function, or the CPM �³FORQLF� SKDVH�
PD[LPXP´�, we look at the EEG recordings backwards in 
time, LQ� RUGHU� WR� VHH� ³ZKDW� DUH� WKH� HOHFWUR-graphical 
precursors of the maximuP�RI�WKH�VHL]XUH�³FORQLF´�SKDVH� We 
consider segments of EEG recordings each of which ends at 
the selected CPM, and starts 200 seconds before that point. 
We selected the range 2-6 Hz as characteristic for the 
³FORQLF´�DQG�RU�³hyperkinetic´ seizures on the basis of semi-
quantitative observations of Gabor power spectra of the video 
time series compared with the power spectra of the 
synchronously recorded EEG signal. We applied a Gabor set 
of scale transformed filters with bandwidths of 10% of the 
corresponding central frequencies and subsequently we 
averaged the amplitudes calculated from all the EEG 
channels. 

III. METHODS 

A. Optical flow 

Optical flow is a well established technique for 
approximate reconstruction of spatial movements as recorded 
in sequences of optical images [5, 6]. In our case the method 
aims to reconstruct the vector field of velocities from the 
luminance changes that are generated by moving objects 
when recorded by video camera. 

^ `),,(),,,(),,( tyxVtyxVtyxL yxo          (1) 

Where ),,( tyxL  is the intensity field contained in the 

video recording as function of the 2D spatial coordinates 

),( yx  and the time t . To compute optical flow we used a 

standard implemented method provided by the Computer 
Vision System Toolbox version 4.1 from Matlab®, 
Mathworks Inc. Natic, USA, release 7.13 (2011b). 

B. Reconstruction of group motion parameters 

Once we reconstructed the velocity fields, we reduced the 
data by extracting only rates of global motion parameters. To 
simplify the notation in (1) we first introduce complex 
coordinates and velocities: 

),(),(),( tziVtzVtzW yx �              (2) 

Where iyxz � , and  1� i . The group of non-

homogeneous linear transformations is then defined by the 

linear decomposition of (2): 

ztSztRtTtzW )()()(),( ��  ;          (3) 

Here )(),( tRtT and )(tS are complex scalars representing: 

T - the translational rates (velocities) along the two image 

axes (the real and imaginary parts); R - the rotational and 

dilatational rates, and S - the shear rates.  

The estimation of T , R  and S  is done directly from the 

optical flow output W  (3) as follows: 
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In (4) we used a normalized parameterization of the image 

coordinates such that:  
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In summary, from the original video image sequence, we 

derive three complex, or equivalently six real, time series 

representing the rates of linear spatial transformations.  

C. Temporal filtering and normalization 

To segment the epochs containing repetitive motor 
movements resembling seizures, we applied a filtering 
procedure extracting the VHL]XUH�PRYHPHQWV¶�IUHTXHQFLHV��L�H��
variations between 2Hz and 6Hz of the transformation rates 
(4). We used a custom method that appeared to give fast 
performance and results not differing from standard filtering 
procedures. The method was also suited for potential real 
time application as a seizure alarm system. The filtering steps 

are described in short below. Let )(tX
c  denote any of the six 

real quantities estimated by (4). Here the letter c denotes the 

FKDQQHO�QXPEHU���«�� 

a) Low-pass filtering: High frequencies are removed by 

smoothing the signals using neighbor point averaging. Given 

the frame rate of 25Hz and an XSSHU�OLPLW�IRU�³FORQLF´�HYHQWs 

of 6Hz we averaged over every two sequential time points. 

.2/))1()(()( ��o tXtXtX
ccc  

b) High-pass filtering: We build a temporal embedding 

vector: ^ ` ))1()1(),((),(
1

0
���{

�

 ntXtXtXtE
cccnc

�WW  - a 

redundant representation of the original signal. We then 

linearly de-trend c
E  around every point t  along the time 

shift dimensionW . In this way slow oscillations extending 

beyond n -points are removed. We assumed 12 n ; for a 

frame rate of 25Hz this would provide high-pass filtering of 

around 2Hz as required.  

c) Signal Variation: As a measure of signal strength we take 

)),(()( WW tEstdtP
cc   

d) Feature smoothing: To obtain a smoother identifier of 

³FORQLF´� HYHQWV��ZH� FRQVLGHU� WKH� VHTXHQFHV: ^ ` 1

0
)(

�

 �
N

k

c
ktP , 

removing the largest and the smallest element, and perform 

harmonic averaging ).))(log(exp()(
W

W�o tPtP
cc  We 

choose N=100 which corresponds to 4 seconds, the assumed 

PLQLPDO�OHQJWK�RI�D�GHWHFWDEOH�³FORQLF´�VHL]XUH�� 
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e) Normalization factor: The same procedure as described 

above is performed with respect to the original signal )(tX
c  

but without Low- and High pass filtering (no de-trending in 

step b) and performing in step d) simple averaging. In this 

way we obtain the signal variation )(0 tP
c containing all 

motion frequencies. 

We define now the likelihood of a MMS event contained in 

each of the six channels (4) as )()()( 0 tPtPtQ
ccc { . At the 

end of this step, six output motor seizure likelihoods ranging 

between 0 (no ±seizure) and (1 ±certain seizure) are 

produced )()( tQtQ
c . 

D. Selection of filtering parameters using Gabor spectral 

technique. 

For the analysis of the non-stationary spectrum of the 
EEG signals [7, 8] we have constructed a set of Gabor 
wavelets with 65 members and central frequencies ranging 
exponentially between 4 and 100 Hz. 

The Gabor aperture functions are given as 

Q
SQQDS

Q

Q Oe
N

ttg
ttitt � � ���� )'(2)'( 22221

),'(       (5) 

Where Q  is the central frequency and the product DQ  is the 

bandwidth of the filter. The normalization factor N  and the 

offset factor QO are chosen so that the functions have zero 

mean and unit 1-norm, or 1),(  ¦
f

�f t

tg Q . We have also 

selected for the factor D  a constant value of 0.1. The result 

of our choice for the Gabor set (5) is therefore a sequence of 

scale transformed filters with bandwidths of 10% of the 

corresponding central frequencies. 

In other words the sequence ^ `65

1 iiQ  was chosen so, that 

65,,2,
)(

)(

1

1
�  

�
�

�

� k
kk

kk D
QQ
QQ . For each electrophysiological 

trace (channel) )(tFch
 where 21,...,2,1 ch , we define its 

Gabor time-frequency dependent amplitude as  

³ �{
'

)'(),'('),(
t

chch tFttgdttG QQ   

To reduce the data, we averaged the spectral amplitudes first 

in the time domain, considering windows of 4 seconds with 

50% overlap. Next we averaged the Gabor amplitudes over 

the set of EEG traces ),(),( QQ tGtG ch  

E. Cross-covariance. 

The cross-covariance measures similarity between two 

signals or time series as a function of the time-lag. In this 

study we use the normalized cross-covariance between 

discrete functions (vectors):  

dttdQtf )()(  , NtttGtg ,...,2,1,),(),(  ww QQ , 

where 200 N  in our case, and we choose as time-lag 

interval ],,[ WW NN ��  as 99,...,1,0,1,...,99 �� W
 

The cross-covariance is then defined as:  
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After normalization with the product of two auto-covariance 

functions at zero lag (equivalent to the signal variations) we 

obtain the normalized cross-covariance function 

with 12 �WN  elements: 

)0(),0(),(),( ffgggfgf CCCC QQWQW �
 

This last function is depicted on Figure 3.  

IV. RESULTS 

We consider separately each case from the available set 
of 42 seizures. The time course of the spectral amplitudes 
obtained from all the EEG traces showed high level of EEG 
activities starting between 10 and 15 seconds before the 
CPM, or on occasions even earlier. To establish the spectral 
dependence of this activity, the average over the EEG 
channels was examined and matched against the video 
detection. Each particular frequency has been normalized to 
its value at the CPM point - the result is presented on Figure 
1. Note that a) because of the recording method (scalp 
recording), muscular artifacts are always present during 
MMS that are characterized by high frequencies typically in 
the gamma range, and b) during the recording some artifacts 
around the frequency of 50Hz may be present due to signal 
contamination induced by the mains AC frequency.  

 
Figure 1. ±The horizontal axes shows the time before CPM- total 200 

seconds; on the right side (right time limit) is the CPM, as detected by our 

algorithm.; the vertical axes shows frequency from 4 to 100 Hz 

logarithmically scaled; the embedded white line illustrates the video 

detection quantification, and has been rescaled to fit the main image plot. 

During the last 20 seconds before CPM, features related 
to the activities during the ³clonic´ phase, most likely muscle 
scalp activities, are visible in the frequency range of 40-
100Hz. Approximately 40 to 60 seconds before CPM one can 
find EEG activities at the low frequency range 4-8Hz, which 
gradually disappear (within 10-15 seconds interval) by 
decreasing as frequency drops further towards 4Hz. 

In Figure 2 the distribution of the video detection 
quantity, thH�³VHL]XUHQHVV´��DV�IXQFWLRQ�RI�WKH�WLPH�SUHFHGLQJ�
a seizure is shown. 
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Figure 2. Illustration of the time course of the distribution of video detection 

feature from all the 42 cases; The horizontal axes shows the time before 

CPM- total 200 seconds; Each box represents statistical distribution of 

video detection function values for all 42 cases corresponding to each time 

mark. On each box, the central mark is the median, the edges of the box are 

the 25th and 75th percentiles, the whiskers extend to the most extreme data 

points not considered outliers, and outliers are plotted individually with red 

stars. 

In order to quantify the dependences between the time 
courses of the EEG spectral amplitudes and the video 
detection feature, we used cross-correlation analysis between 
the time derivatives of the corresponding sequences. The 
normalized correlation functions for all the 42 seizures are 
averaged and the result is presented in Figure 3. 

 
Figure 3. The result of cross-covariance between the time derivatives of the 

EEG spectra and video detection; Plot shows normalized cross-covariance 

function averaged for all the 42 seizures; Frequencies are presented on the 

vertical axis; Horizontal axis presents time lags indicated in seconds; Where 

EEG preceded the video signal appears in the negative part (negative time 

scale) of the plot; where video preceded the EEG appears in the positive 

part (positive time scale) of the plot. The pseudo-color scale indicates level 

of normalized covariance coefficient from -1 (fully anti-correlated) to 1 

(fully correlated); Note that the video detection applies to the clonic phase 

of the motor seizure. This may be preceded by a tonic phase of variable 

duration. The latter, however, is not taken into account in the analysis 

presented here. 

At most frequencies the EEG spectral amplitudes precede 
the video detection by about 2-8 seconds. Note the precursory 
high values of the amplitudes at around 5Hz preceding the 
video detection by 20 seconds and those in the interval 
between 20Hz and 80Hz preceding with 30 seconds. The 
detailed information about the maximal amount of correlation 

between the spectral amplitudes and the video detection 
feature is shown on Figure 4.  

 
Figure 4. Distribution of frequency ranges, preceding the video detection 

V. CONCLUSIONS AND DISCUSSION 

The robust quantification and the early detection of 
epileptic motor events are major challenges in the field of 
epilepsy research. This study shows that there are identifiable 
electro-graphical events which occur prior to the seizure 
³clonic´ seizure phase as detected by video analysis. This 
suggests some possibilities for earlier detection. Fully 
automated detection algorithms could be developed on the 
basis of the present study. Automated systems for such 
seizure detection may contribute to the quality of life of 
patients suffering from those conditions and also may provide 
a faster and more efficient tool for diagnostic screening of 
large data sets [9].  
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