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Figure 1 Ictal EEG with rhythmic morphology and 

with muscle artifacts (A) compared to the power 

spectrum of the same signal (B). A method based on 

spectral analysis will be capable of detecting the 

underlying rhythmic pattern as the power spectrum 

reveals a strong peak at 4 Hz. 

� 

Abstract² The detection of epileptic seizures in long-term 

electroencephalographic (EEG) recordings is a time-consuming 

and tedious task requiring specially trained medical experts. 

The EpiScan [1±4] seizure detection algorithm developed by the 

Austrian Institute of Technology (AIT) has proven to achieve 

high detection performance with a robust false alarm rate in 

the clinical setting. This paper introduces a novel time domain 

method for detection of epileptic seizure patterns with focus on 

irregular and distorted rhythmic activity. The method scans the 

EEG for sequences of similar epileptiform discharges and uses 

a combination of duration and similarity measure to decide for 

a seizure. The resulting method was tested on an EEG database 

with 275 patients including over 22000h of unselected and 

uncut EEG recording and 623 seizures. Used in combination 

with the EpiScan algorithm we increased the overall sensitivity 

from 70% to 73% while reducing the false alarm rate from 0.33 

to 0.30 alarms per hour.  

I. INTRODUCTION 

LECTROENCEPHALOGRAPHY (EEG) is the medical 

standard for examination of patients suffering from 

epilepsy. Long-term EEG recordings lasting for several days 

are needed for pre-surgical evaluation of patients with 

refractory epilepsy types or patients having inacceptable 

medical side-effects. The unpleasant situation for patients 

monitored continuously with video and EEG is impaired 

with an increased risk of seizures as anti epileptic drugs are 

reduced. Not only is a thorough analysis of the long-term 

EEG involving medical experts required but also a 24 hour 

surveillance of the EEG in real-time. An automatic method 

that marks seizure events can reduce evaluation time 

drastically and increases patient security by alerting medical 

staff immediately.  

A major problem in the automatic seizures detection is the 

inter-patient variability of ictal patterns ranging from quasi 

periodic patterns over patterns with high frequency variation 

or abrupt phase changes to completely irregular groups of 

ictal discharges. The existing EpiScan algorithm [1±5] 

identifies ictal activity with rhythmic or periodic 

morphology using a continuous wavelet transform approach. 

This method has reached a high overall sensitivity and a low 

false alarm rate in uncut, unselected clinical data [4]. Ictal 
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patterns with high frequency variation and phase changes 

were partly recognized by the EpiScan algorithm, but lead to 

higher overall false alarm rates. 

In this paper a time domain algorithm for detection of 

epileptic seizures called Epileptiform Wave Sequence (EWS) 

analysis will be presented that is designed to reliably detect 

epileptic seizures with rhythmic morphology and especially 

addresses the group of ictal patterns with a moderate 

irregular structure, abrupt phase changes or distortions. In 

this context an epileptiform wave is a pathologic discharge 

seen in the EEG and a sequence is an epoch dominated by 

waves with the same properties. 

Such wave sequences result from repeating discharges of 

groups of cortical neurons with abnormal hypersychronous 

behavior [6]. The post-synaptic electrical potentials [6] 

coming from a synchronous firing neuronal group in the 

seizure onset zone mix non-linearly with other physiological 

signals, will be attenuated at the skull bone and finally sum 

up with artifacts from scalp muscles and technical electrode 

artifacts. Ictal patterns with moderate irregular morphology 

are often seen in patients with ictal slowing, rhythmic delta 

activity or in a secondary generalization phase of the seizure 

when the rhythmic pattern at onset (PAO) was obscured.  

Figure 1 shows an example of an ictal signal interfered with 

noise that can be easily analyzed by a method based on a 
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Figure 2 : Ictal EEG signal with an irregular 

morphology (A) that leads to a fuzzy spectrum after 

transformation in the frequency domain (B). The 

power spectrum looks smeared and has equally high 

components from 2 to 5 Hz. The averaging of the 

spectral analysis obscures the simple structure of 

repeating discharges seen in the time series. 

 

spectral estimation. A time series analysis is preferable for 

the signal in Figure 2 because the more irregular distance 

between adjacent peaks do not result in a stable frequency 

for spectral estimation. Hence a combination of both 

approaches will be preferable. 

 

Time-series algorithms that search for unique markers in the 

signal to segment and analyze the patterns are commonly 

used in the field of EEG analysis. Gotman e.g. [7±9] showed 

several applications with this approach. In this paper the 

method is evaluated using a comprehensive EEG database 

with statistical relevance. 

 

II. METHODS 

A.  Frequency domain analysis 

EpiScan utilizes a continuous wavelet transformation 
algorithm called Periodic Waveform Analysis (PWA) to 
search for rhythmic patterns in the surface electrode EEG 
channels. More details can be found in [2], and a complete 
performance analysis using the AIT EEG database can be 
found in [3].  

 

B.  Time domain analysis 

The Epileptiform Wave Sequence (EWS) analysis was 
designed to reliably detect epileptic seizure patterns with 
rhythmic morphology in the time domain and especially 
encounter the problems of high frequency variation, abrupt 
phase changes and signal distortions by muscle or electrode 
artifacts. The EWS analysis will proceed as follows: 

1. wave classification 

2. wave clustering 

3. sequence creation 

4. intra-sequence correlation 

 

Step 1 will find interesting signals called waves, Step 2 

group waves with the same properties using a clustering 

algorithm. Step 3 then creates a sequence from waves 

belonging to the same cluster. Step 4 calculates a correlation 

value acting as similarity measure for the sequence. 

1) Wave classification 

To find epileptogenic waves, the signal is scanned iteratively 

over time for maxima of ictal discharges. A wave is defined 

as the signal between two adjacent maxima that fulfills the 

following classification criteria: 

 

x the instantaneous frequency Bá has to be in range  

x the dynamic @áof the wave has to be high enough 

x the high frequency noise of a wave has to be small 

 

 

The instantaneous frequency Bá of wave J is the ratio of the 

sampling frequency Bæ to the duration of the wave measured 

between time points of two maximum peaks ìÞ
àÔë. 
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The dynamic of a wave @á is measured using the two 

maximum values and the including minimum value PàÜáÞ 
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with the slope G�defined as 
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The high frequency noise of a wave is measured using the 

sum of squares of all adjacent signal points T:P; in the wave.  

This wave-extraction scheme will solve the problems of 

phase changes, signal distortion and high frequency 

variation as all waves are handled separately. Only a 

sequence of epileptogenic waves with similar morphology 

reliably specify a seizure pattern, so a sequence needs to be 

found. 

 

 2) Wave clustering 

Waves will be clustered using the measures found in the 

wave classification step.  The clustering algorithm uses a 

given variance to find a single subgroup that dominates the 

ictal EEG. The variances were found using a statistical 

analysis of the AIT EEG-database and cross-validation with 

knowledge from specially trained EEG experts. Clustering is 

done sequentially using the instantaneous frequency, wave 

amplitude and the noise measure. 
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Figure 3 Ictal EEG (sampling frequency 256 Hz) with a repeating 

but irregular morphology and the detected sequence marked with 

filled circles at the end of the wave. Note that some waves are left out 

as they do not fit into the cluster or the sequence restrictions. 

3) Sequence creation 

After wave clustering a sequence will be defined allowing 
gaps that correspond to signal distortions. This step will 
create the sequence using only clustered waves but leaving 
out signal epochs with artifacts. This will avoid mixing 
artifacts and interesting signals like in the spectral widening 

problem of the FFT [10]. An example of an ictal EEG in the 
delta band with marked waves as sequence is shown in 
Figure 3. 

4) Intra-sequence correlation 

The morphology of the waves in the sequence is used to 

separate artifacts from ictal patterns based on the 

observation that ictal sequences of epileptogenic discharges 

look similar to each other. A similarity value Û is calculated 

that models the similarity in a group of waves. Note that the 

morphology is not pre-defined but only must be similar in 

the sequence. This will avoid correlation artifacts as in 

cosine or wavelet transforms where a signal needs to be 

decomposable into the respective signal forms. The 

similarity value Û is calculated using the signal of 

0�extracted waves Sá:P;. 
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The measure Û will then be used as replacement for the PWI 

feature in the EpiScan algorithm as described in [2]. 

 

C. Performance analysis 

1) Sensitivity: The detection sensitivity was evaluated as 

follows: Each marker of electrographically visible seizures 

that intersects with a seizure alert from the algorithm is 

regarded as true positive event, whereas each seizure marker 

with no intersection is a false negative event. For each 

patient with recorded seizures the sensitivity is determined 

as the ratio of true positives and the total number of recorded 

seizures. We evaluate these sensitivities by calculating the 

mean over all patients with seizures. Averaging over patient-

wise sensitivities is done since seizure counts of the patients 

are not equally distributed.  

 

 

2) False alarm rate: The false alarm rate is also calculated 

patient-wise. Long contiguous markers from an automatic 

seizure detector create a higher review effort than short ones 

that can be inspected on a single EEG screen. In order to 

accommodate this fact, each seizure alert is divided into 

multiple sub-markers of maximally 30 seconds, meaning 

that each of these markers contributes to the false alarm rate. 

Each sub-alert that does not intersect with a true seizure 

marker (basic truth) is regarded as a false alarm. The number 

of false alarms for one patient divided by the total number of 

hours of EEG recordings for this patient gives the false 

alarm rate. False alarm rates are evaluated by calculating the 

mean over all patients. 

 

D. Test set 

The EEG database of the AIT [1] was used to validate the 

seizure detection performance. The database includes solely 

uncut and unselected EEG long-term recordings from 

several epilepsy monitoring units, mostly in 256 Hz 

sampling rate using the standard 10-10 or 10-20 

international electrode system.  

 

AIT EEG Database  Measure 

# Patients 275 

# Patients with epilepsy 159 

# Patients with seizures 96 

# Epileptic seizures 623 

# Hours of EEG recordings 22463 

Table 1 Overview of the AIT EEG database 
 

 

III. RESULTS  

 A. EWS Detection Performance 

The EWS algorithm reached 100% detection sensitivity in a 

third of the patients (N=31). The mean of the detection 

sensitivity using all patients with all epilepsy types (N=96) is 

53%. The overall false alarm rate of all patients (N=275) 

was 0.14 false alarms per hour (FA/h).  

 

B. Combined EpiScan and EWS Detection Performance 

To optimize the detection performance without further 

increasing the false alarm rate (compared to [4]) a PWA 

setting with reduced sensitivity was combined with the EWS 

algorithm. Figure 4 draws the detection sensitivity as 

function of the false alarm rate showing that the combination 

with the EWS algorithm is preferable to a further increase of 

the PWA sensitivity. The advantage of the combined version 

is an increase of 3% in sensitivity and a reduction of 0.034 

false alarms per hour (FA/h) giving absolute values of 73% 

overall sensitivity (N=96) with an overall false alarms rate 

(N=275) of 0.3 FA/h. The combination leads to an 

improvement because irregular ictal patterns are detected 

more efficiently with the EWS algorithm.  

A histogram showing the detection performance of the 

combined method is given in Figure 5. Note that the 
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Figure 4 The plot of the algorithm operating 

characteristic (AOC) shows the overall detection 

sensitivity in percent against the false alarm rate per 

hour (FA/h). The marker PWA_L2 correspond to 

EpiScan algorithm solely based on PWA published in 

[4]. The EWS algorithm is combined with the setting 

PWA_L1 to raise sensitivity while reducing FA/h 

compared to PWA_L2, giving the marker HYB_L1. 

HYB_L1 

PWA_L1 

PWA_L2 

0.6

0.65

0.7

0.75

0.8

0.15 0.25 0.35

S
e

n
si

ti
v

it
y

 [
%

] 

FA/h 

combining  

with EWS 

increasing PWA 

sensitivity 

majority of patients (N=52) had a detection sensitivity of 

100%. The important subgroup of temporal lobe epilepsy 

(TLE) patients (N=61) is detected with high sensitivity of 

83.6% and a false alarm rate of 0.29 FA/h. 

 
Figure 5  The histogram of the combined detection 

performance using the PWA_L1 and the EWS algorithm. 

Most of the 96 patients with seizures have a detection 

performance of 100%, patients having lower detection 

sensitivities are nearly equally distributed. The mean of the 

detection sensitivity is 73%. 

 

 

 

 

 

 

 

IV. DISCUSSION 

A time domain approach of an epileptic seizure detector 

called EWS was presented that showed its effectiveness in 

detection of rhythmic seizure patterns with moderate 

irregular morphology or signal distortions. The combination 

with the EpiScan algorithm leads to a new hybrid detection 

scheme with a performance that could not be reached by one 

algorithm alone. An overall detection sensitivity of 73% 

while having a false alarm rate of 0.3 was reached that 

correspond to an increase of 3% in sensitivity and a 

reduction of 0.034 in false alarm rate compared to [4]. The 

performance of the important group of TLE patients reached 

a sensitivity of 83.6% with a false alarms rate of 0.29 alarms 

per hour. 

The analysis of the problems and results imply that many 

feature extraction schemes working on biomedical signals 

face similar problems and that they will benefit from hybrid 

algorithm approaches as the strengths of both viewpoints are 

needed to bring performance to new levels.   
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