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Signal subspace integration for improved seizure localization
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Abstract— A subspace signal processing approach is proposed
for improved scalp EEG-based localization of broad-focus
epileptic seizures, and estimation of the directions of source
arrivals (DOA). Ictal scalp EEGs from adult and pediatric
patients with broad-focus seizures were first decomposed into
dominant signal modes, and signal and noise subspaces at each
modal frequency, to improve the signal-to-noise ratio while
preserving the original data correlation structure. Transformed
(focused) modal signals were then resynthesized into wide-
band signals from which the number of sources and DOA
were estimated. These were compared to denoised signals
via principal components analysis (PCA). Coherent subspace
processing performed better than PCA, significantly improved
the localization of ictal EEGs and the estimation of distinct
sources and corresponding DOAs.

I. INTRODUCTION

Accurate spatial localization of epileptic seizures from
scalp EEGs is a difficult problem. The precision of scalp-
based localizations is limited by the spatial resolution of the
electrode array, typically of the order of several cm in clinical
systems. Also the inherent structure and complexity of scalp
EEG signals, which measure aggregate neural activity from
multiple cerebral and non-cerebral sources with overlapping
spectral contents, also limits the localization accuracy. Typ-
ically, clinicians visually examine ictal EEGs to identify the
electrode(s) at which seizure-related waveforms first appear,
and estimate the corresponding brain area covered by this
electrode as the region of ictal onset. However, in many cases
focal seizures may be lateralizable to a cerebral hemisphere
but may not be localizable to a smaller brain area. These are
sometimes referred to as broad-focus seizures. A number of
source separation methods have been proposed for decou-
pling contributions from multiple sources in scalp signals,
e.g., [2], [5], [4], [6], [8], [11], [14]. Some of these methods
aim to separate cerebral from non-cerebral contributions,
particularly muscle- and eye-blink related artifacts that often
contaminate scalp signals. The problem of decoupling multi-
path seizure propagation from either multiple foci or broad
regions of the brain has received relatively less attention,
despite its clinical relevance. In particular, pediatric patients
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often have heterogeneous seizures with significant intra-
patient variability, which are difficult to localize.

This study investigated signal decomposition and subspace
processing for improving source localization, and identifying
individual source directions of arrival in scalp EEGs recorded
during broad-focus seizures. Signal subspace methods use an
empirically derived signal basis to construct the subspace,
and have been proposed for narrow- and broad-band pro-
cessing [7], [13], [22], [18]. Despite many similarities, these
methods are not identical to principal (PCA) or independent
component (ICA) analyses. The assumption of statistical
source independence may hold for multifocal seizure with
multiple distinct focis, but not for broad-focus seizures with
a spatially diffuse focus, for which ICA-based methods
may not be appropriate. Also, PCA aims to re-express
these signals as a sum of uncorrelated components, which
may be geometric abtractions and may not correspond to
individual, but correlated seizure sources. Thus, to preserve
the original data correlation and still eliminate components
corresponding to noise, subspace signal processing may be
more appropriate. Multiple Signal Classification (MUSIC),
which is also a subspace processing method is widely used
for DOA estimation [17].

II. METHODS

A. Electrophysiological Data

Two scalp EEG datasets were analyzed, from 3 adult
patients (age 33-50) and 3 pediatric patients (age 18-20),
respectively, all with diagnosed focal epilepsy and multiple
ictal segments that were not localizable to a single electrode
or well defined brain region via standard EEG examination
and analysis. The National Institutes of Health (NIH) define
children as individuals under the age of 21. Adult data were
recorded in the Clinical Neurophysiology Laboratory of the
Comprehensive Epilepsy Center at Beth Israel Deaconess
Medical Center. A standard international 10-20 clinical EEG
system was used, and signals were remontaged to a common
average reference. All EEGs were sampled at 500 Hz.
Pediatric data were collected at Children’s Hospital Boston,
in the Clinical Neurophysiology Laboratory of the Epilepsy
Center, using a clinical 10-20 EEG system (with additional
electrodes FT9 and FT10). Signals were sampled at 1024
Hz and remontaged to a common average reference. Note
that there is a slight difference in EEG nomeclature in
the adult and pediatric datasets. Table I summarizes patient
demographics and data details.
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TABLE I
CLINICAL/DATA INFORMATION

Patient | Age # Ictal Localization
segments | by visual EEG inspection

1 33 7 R hemisphere
2 50 2 -
3 42 11 R/L hemispheres
4 20 4 R Frontal/Central/Parietal
5 18 2 R Anterior quadrant
6 18 4 R Frontal/Central/Parietal

B. EEG Preprocessing

A stopband filterbank of 3rd order elliptical filters centered
at the 60 Hz-harmonics of powereline noise, was applied to
to data, in the range 60-250 Hz for adult EEGs and 60-
512 Hz for pediatric EEGs, with a 1 Hz bandwidth, 20
dB attenuation in the stopband, and 0.5 dB ripple in the
passband. Signals were filtered in both forward and reverse
directions to eliminate phase distortions due to the non-linear
phase of the filter. Eye blinking and muscle artifacts were
suppressed using a matched-filtering approach [19].

C. Subspace signal processing

Algorithms for source separation include decomposition
methods, such as principal and independent component anal-
ysis, statistical methods based on ARMA and nonlinear
regression models, and various beamforming approaches,
e.g., [1], [3], [12], [16], [23], [25]. Some of these methods
may not appropriate for decomposing correlated sources
[16]. In broad-focus seizures, contributions from individual
sources may be correlated.

1) Model preliminaries: We consider an N-channel EEG
array that measures signals x(¢) from p wideband seizure
sources in the presence of noise. We define the ictal source
vector as §= [s1(t),...,5,(¢)]T. The observed signals are then
represented as a weighted superposition of individual source
contributions, with relative delays 7;, and noise:

P
x() =Y bjsj(t+ 1)) +v(1) (1)
j=1
where b; are the source weights. We assume an uncorrelated
to the sources and normally distributed noise field, V(1) ~
A(0,2?). Given the non-stationarity of EEG signals, a
processing window [t, t+T] is defined, in which stationarity
may be assumed. In previous studies we have estimated that
at least in adults, the dynamics and statistics of ictal EEGs
vary with a periot of ~3-4 s [20]. Therefore, in this study
we used a processing window of length T = 4s.

2) Signal decomposition into dominant components: Em-
pirical mode decomposition (EMD) is a flexible, data-driven
method for estimating the dominant components (modes) of a
non-stationary signal [10]. EEGs were decomposed into their
dominant modes, each with a distinct characteristic frequency
fi- An example is shown in Figure 1. All analyzed seizures
were not localizable by means of standard clinical methods
of visual EEG examination and interpretation. EEGs were

decomposed into their dominant modes and each modal ma-
trix was subsequently decomposed into mutually orthogonal
signal and noise subspaces. Once individual modes were
denoised, new wideband signals with increased signal-to-
noise (SNR) ratio were synthesized. The gain in SNR was in
the range of 2.8-10.4 dB. Directions of arrival were estimated
from the latter signals.
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Fig. 1. Raw EEG signal (at channel T3) and 5 estimated dominant modes.
In this example the entire non-stationary signal was decomposed.

3) Construction of modal signal subspaces: The coherent
subspace processing method introduced by [24], which is
widely used for estimation of arrival angles from multiple
sources, was used here using individual EEG modal signals.
It involves a transformation of narrowband data using a
focusing matrix, so that within the common bandwidth of
sources si,...,54, the direction (or array manifold) matrix
A8, f;) = [d(61, fi),...,d(6,, fi)] is constant. @(6, f;) is the
direction of the kth source at frequency f; with respect to
some fixed reference point. Therefore, the following trans-
formation of decomposed mode signals x,,(¢) is necessary:

Ym(fist) =T (fi)xm(fist) 2)

T(f)A(0,fi) =A(6, fc) ©)

where f, is a constant frequency. The focusing matrix T

is not a priori known and its estimation requires an initial

guess of the arrival angles. If this deviates significantly from

the true angles, this results in significant estimation bias. In
this study, we estimated 7 using the minimization [9]:

mint ||A(6, fe) = T(fi)A(6, fi)llr 4)

where |- ||r denotes the Frobenius norm. Note that for
coherent integration of all frequencies in the broadband
signal, this focusing is necessary [23]. The transformed and
resynthesized wideband signals are given by

M
F6) =Y T(fm)Zn(r) )
m=1
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Spatial spectra of ¥(¢) were estimated in order to identify
the peaks corresponding to individual source contributions
and DOAs. The adaptation of the Pisarenko framework
[15], for estimation of spatial spectra from the eigenval-
ues/eigenvectors of the sample covariance matrix, was used
for this purpose [21]. Table II compares clinical seizure lo-
calizations to those obtained via signal subspace processing.

TABLE II
SEIZURE LOCALIZATIONS

Patient Localization (raw EEG) Localization (processed)
1 R hemisphere T2, T4
2 - F8,T2,T4,T6
3 R/L hemispheres T3 (7 SZ), T2, T4 (4 S7)
4 R Frontal/Central/Parietal F4, Fp2
5 R Anterior quadrant T4
6 R Frontal/Central/Parietal F4, F8

III. RESULTS

In addition to signal subspace decompositions, EEGs were
also denoised using PCA. The first 3 principal components
were used to resynthesize filtered signals, as they explained
on average ~80% of the data variance. Figures 2-3 and 5
show examples of raw, subspace- and PCA-filtered EEGs
from two adult and one pediatric patient, respectively. All
ictal segments are from the first 10 s of each seizure.

Raw ictal EE@ signals PCA: data resynthesized with 3 components Subspace filtered signals
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Fig. 2. Raw (left panel), PCA-filtered (middle panel) and subspace-filtered
EEG signals (right panel), from patient #2.

Source locations are not identifiable in raw EEGs in Figure
2. In PCA-filtered signals, activity in a large area of the right
hemisphere is estimated, which includes frontal, temporal,
parietal and central channels. In subspace-processed signals
the activity is further constrained to channels F8 T4, T6, T2.

In raw EEGs in Figure 3, bilateral activations make it dif-
ficult to estimate the seizure onset zone. Subspace processing
enhanced activation in channel T3, with smaller contributions
from channels T2, T4 and F8, and attenuated activity in all
other channels. The corresponding spatial spectrum with a

Raw ictal EE@ signals PCA: data resynthesized with 3 components Subspace filtered signals
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Fig. 3. A second example (from patient #3), of raw (left panel) and
processed ictal EEG signals (middle and right panels).

peak approximately in the direction of channels T3 is shown
in Figure 4. Note that the midline corresponds to the 0 —180°
axis, and increasing azimuth is counterclockwise.
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Fig. 4. Estimated DOA for the ictal segment in Figure 3. The highest
spectral peak corresponds to the direction of channel T3, with additional
peaks (~25-30 dB lower), in the directions of channels F3, FP2, and T2/T4.

In subspace-filtered signals in Figure 5, only activations
in channels F4 and Fp2 are enhanced. The corresponding
spatial spectrum of the subspace processed data is shown in
Figure 6. Two peaks with spectral power ~120 dB and ~80
dB, respectively, and DOAs ~-30° and ~-10°, are clearly
identifiable. These approximately correspond to arrivals in
the direction of channels F4 and Fp2.

IV. DISCUSSION

We have proposed a signal subspace integration method
that combines mode decomposition with transformations (fo-
cusing) of individual modal signals and their corresponding
subspaces, to denoise scalp EEGs and improve the local-
ization of multiple correlated seizure source contributions.
In contrast to previous studies that have applied subspace
methods to eliminate artifactual contributions or decouple
independent sources in EEGs, here we applied this method
to decouple correlated ictal contributions in broad-focus
seizures. Specifically, two sets of ictal EEGs were analyzed,
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Fig. 5. Example from one pediatric patient (# 6 in Table 1): Raw (left
panel) and and denoised ictal EEG signals (middle and right panels).
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Fig. 6. Estimated DOA for the ictal segment in Figure 5. The highest

spectral peak corresponds to the direction of channel T4, and a second
peak (~40 dB lower), occurs in the directions of channel Fp2.

from adult and pediatric patients with focal epilepsy, and
non-localizable seizures via clinical EEG examination. We
compared denoising via subspace processing to PCA-based
filtering. Subspace processing improved the specificity of the
localization significantly both in comparison to raw EEG
analysis and PCA. Furthermore contributions from individual
sources (localizable to EEG electrodes) and their directions
of arrival were identifiable in spatial spectra of subspace
processed signals. Thus, this approach is promising for scalp
EEG denoising, and may be used in conjuction with other
localization algorithms, e.g., time-delay based, or even visual
examination of filtered signals. Evidently this is only a pre-
liminary study and does not include a rigorous comparison
with other subspace decomposition methods, simulations or
application to large EEG datasets. Furthermore, comparison
seizure freedom after resection of the presumed epileptogenic
zone, which is the ultimate gold standard of localization will
validate the accuracy of the proposed approach. To assess
the specificity and performance of the method, an extensive
study that includes these comparisons is necessary.
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