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Abstract—A subspace signal processing approach is proposed
for improved scalp EEG-based localization of broad-focus
epileptic seizures, and estimation of the directions of source
arrivals (DOA). Ictal scalp EEGs from adult and pediatric
patients with broad-focus seizures were first decomposed into
dominant signal modes, and signal and noise subspaces at each
modal frequency, to improve the signal-to-noise ratio while
preserving the original data correlation structure. Transformed
(focused) modal signals were then resynthesized into wide-
band signals from which the number of sources and DOA
were estimated. These were compared to denoised signals
via principal components analysis (PCA). Coherent subspace
processing performed better than PCA, significantly improved
the localization of ictal EEGs and the estimation of distinct
sources and corresponding DOAs.

I. INTRODUCTION

Accurate spatial localization of epileptic seizures from

scalp EEGs is a difficult problem. The precision of scalp-

based localizations is limited by the spatial resolution of the

electrode array, typically of the order of several cm in clinical

systems. Also the inherent structure and complexity of scalp

EEG signals, which measure aggregate neural activity from

multiple cerebral and non-cerebral sources with overlapping

spectral contents, also limits the localization accuracy. Typ-

ically, clinicians visually examine ictal EEGs to identify the

electrode(s) at which seizure-related waveforms first appear,

and estimate the corresponding brain area covered by this

electrode as the region of ictal onset. However, in many cases

focal seizures may be lateralizable to a cerebral hemisphere

but may not be localizable to a smaller brain area. These are

sometimes referred to as broad-focus seizures. A number of

source separation methods have been proposed for decou-

pling contributions from multiple sources in scalp signals,

e.g., [2], [5], [4], [6], [8], [11], [14]. Some of these methods

aim to separate cerebral from non-cerebral contributions,

particularly muscle- and eye-blink related artifacts that often

contaminate scalp signals. The problem of decoupling multi-

path seizure propagation from either multiple foci or broad

regions of the brain has received relatively less attention,

despite its clinical relevance. In particular, pediatric patients
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often have heterogeneous seizures with significant intra-

patient variability, which are difficult to localize.

This study investigated signal decomposition and subspace

processing for improving source localization, and identifying

individual source directions of arrival in scalp EEGs recorded

during broad-focus seizures. Signal subspace methods use an

empirically derived signal basis to construct the subspace,

and have been proposed for narrow- and broad-band pro-

cessing [7], [13], [22], [18]. Despite many similarities, these

methods are not identical to principal (PCA) or independent

component (ICA) analyses. The assumption of statistical

source independence may hold for multifocal seizure with

multiple distinct focis, but not for broad-focus seizures with

a spatially diffuse focus, for which ICA-based methods

may not be appropriate. Also, PCA aims to re-express

these signals as a sum of uncorrelated components, which

may be geometric abtractions and may not correspond to

individual, but correlated seizure sources. Thus, to preserve

the original data correlation and still eliminate components

corresponding to noise, subspace signal processing may be

more appropriate. Multiple Signal Classification (MUSIC),

which is also a subspace processing method is widely used

for DOA estimation [17].

II. METHODS

A. Electrophysiological Data

Two scalp EEG datasets were analyzed, from 3 adult

patients (age 33-50) and 3 pediatric patients (age 18-20),

respectively, all with diagnosed focal epilepsy and multiple

ictal segments that were not localizable to a single electrode

or well defined brain region via standard EEG examination

and analysis. The National Institutes of Health (NIH) define

children as individuals under the age of 21. Adult data were

recorded in the Clinical Neurophysiology Laboratory of the

Comprehensive Epilepsy Center at Beth Israel Deaconess

Medical Center. A standard international 10-20 clinical EEG

system was used, and signals were remontaged to a common

average reference. All EEGs were sampled at 500 Hz.

Pediatric data were collected at Children’s Hospital Boston,

in the Clinical Neurophysiology Laboratory of the Epilepsy

Center, using a clinical 10-20 EEG system (with additional

electrodes FT9 and FT10). Signals were sampled at 1024

Hz and remontaged to a common average reference. Note

that there is a slight difference in EEG nomeclature in

the adult and pediatric datasets. Table I summarizes patient

demographics and data details.
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TABLE I

CLINICAL/DATA INFORMATION

Patient Age # Ictal Localization
segments by visual EEG inspection

1 33 7 R hemisphere

2 50 2 -

3 42 11 R/L hemispheres

4 20 4 R Frontal/Central/Parietal

5 18 2 R Anterior quadrant

6 18 4 R Frontal/Central/Parietal

B. EEG Preprocessing

A stopband filterbank of 3rd order elliptical filters centered

at the 60 Hz-harmonics of powereline noise, was applied to

to data, in the range 60-250 Hz for adult EEGs and 60-

512 Hz for pediatric EEGs, with a 1 Hz bandwidth, 20

dB attenuation in the stopband, and 0.5 dB ripple in the

passband. Signals were filtered in both forward and reverse

directions to eliminate phase distortions due to the non-linear

phase of the filter. Eye blinking and muscle artifacts were

suppressed using a matched-filtering approach [19].

C. Subspace signal processing

Algorithms for source separation include decomposition

methods, such as principal and independent component anal-

ysis, statistical methods based on ARMA and nonlinear

regression models, and various beamforming approaches,

e.g., [1], [3], [12], [16], [23], [25]. Some of these methods

may not appropriate for decomposing correlated sources

[16]. In broad-focus seizures, contributions from individual

sources may be correlated.

1) Model preliminaries: We consider an N-channel EEG

array that measures signals x(t) from p wideband seizure

sources in the presence of noise. We define the ictal source

vector as ~s= [s1(t), ...,sp(t)]
T . The observed signals are then

represented as a weighted superposition of individual source

contributions, with relative delays τ j, and noise:

x(t) =
p

∑
j=1

b js j(t + τ j)+ ν(t) (1)

where b j are the source weights. We assume an uncorrelated

to the sources and normally distributed noise field, ~ν(t) ∼
N (0,Σ2). Given the non-stationarity of EEG signals, a

processing window [t, t+T] is defined, in which stationarity

may be assumed. In previous studies we have estimated that

at least in adults, the dynamics and statistics of ictal EEGs

vary with a periot of ∼3-4 s [20]. Therefore, in this study

we used a processing window of length T = 4s.

2) Signal decomposition into dominant components: Em-

pirical mode decomposition (EMD) is a flexible, data-driven

method for estimating the dominant components (modes) of a

non-stationary signal [10]. EEGs were decomposed into their

dominant modes, each with a distinct characteristic frequency

fi. An example is shown in Figure 1. All analyzed seizures

were not localizable by means of standard clinical methods

of visual EEG examination and interpretation. EEGs were

decomposed into their dominant modes and each modal ma-

trix was subsequently decomposed into mutually orthogonal

signal and noise subspaces. Once individual modes were

denoised, new wideband signals with increased signal-to-

noise (SNR) ratio were synthesized. The gain in SNR was in

the range of 2.8-10.4 dB. Directions of arrival were estimated

from the latter signals.

Fig. 1. Raw EEG signal (at channel T3) and 5 estimated dominant modes.
In this example the entire non-stationary signal was decomposed.

3) Construction of modal signal subspaces: The coherent

subspace processing method introduced by [24], which is

widely used for estimation of arrival angles from multiple

sources, was used here using individual EEG modal signals.

It involves a transformation of narrowband data using a

focusing matrix, so that within the common bandwidth of

sources s1, ...,sd , the direction (or array manifold) matrix

A(θ , fi) = [~a(θ1, fi), ...,~a(θp, fi)] is constant. ~a(θk, fi) is the

direction of the kth source at frequency fi with respect to

some fixed reference point. Therefore, the following trans-

formation of decomposed mode signals xm(t) is necessary:

ym( fi,t) = T ( fi)xm( fi,t) (2)

T ( fi)A(θ , fi) = A(θ , fc) (3)

where fc is a constant frequency. The focusing matrix T

is not a priori known and its estimation requires an initial

guess of the arrival angles. If this deviates significantly from

the true angles, this results in significant estimation bias. In

this study, we estimated T using the minimization [9]:

minT‖A(θ , fc)−T ( fi)A(θ , fi)‖F (4)

where ‖ · ‖F denotes the Frobenius norm. Note that for

coherent integration of all frequencies in the broadband

signal, this focusing is necessary [23]. The transformed and

resynthesized wideband signals are given by

~y(t) =
M

∑
m=1

T ( fm)~xm(t) (5)
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Spatial spectra of ~y(t) were estimated in order to identify

the peaks corresponding to individual source contributions

and DOAs. The adaptation of the Pisarenko framework

[15], for estimation of spatial spectra from the eigenval-

ues/eigenvectors of the sample covariance matrix, was used

for this purpose [21]. Table II compares clinical seizure lo-

calizations to those obtained via signal subspace processing.

TABLE II

SEIZURE LOCALIZATIONS

Patient Localization (raw EEG) Localization (processed)

1 R hemisphere T2, T4

2 - F8,T2,T4,T6

3 R/L hemispheres T3 (7 SZ), T2, T4 (4 SZ)

4 R Frontal/Central/Parietal F4, Fp2

5 R Anterior quadrant T4

6 R Frontal/Central/Parietal F4, F8

III. RESULTS

In addition to signal subspace decompositions, EEGs were

also denoised using PCA. The first 3 principal components

were used to resynthesize filtered signals, as they explained

on average ∼80% of the data variance. Figures 2-3 and 5

show examples of raw, subspace- and PCA-filtered EEGs

from two adult and one pediatric patient, respectively. All

ictal segments are from the first 10 s of each seizure.

Fig. 2. Raw (left panel), PCA-filtered (middle panel) and subspace-filtered
EEG signals (right panel), from patient #2.

Source locations are not identifiable in raw EEGs in Figure

2. In PCA-filtered signals, activity in a large area of the right

hemisphere is estimated, which includes frontal, temporal,

parietal and central channels. In subspace-processed signals

the activity is further constrained to channels F8 T4, T6, T2.

In raw EEGs in Figure 3, bilateral activations make it dif-

ficult to estimate the seizure onset zone. Subspace processing

enhanced activation in channel T3, with smaller contributions

from channels T2, T4 and F8, and attenuated activity in all

other channels. The corresponding spatial spectrum with a

Fig. 3. A second example (from patient #3), of raw (left panel) and
processed ictal EEG signals (middle and right panels).

peak approximately in the direction of channels T3 is shown

in Figure 4. Note that the midline corresponds to the 0−180o

axis, and increasing azimuth is counterclockwise.

Fig. 4. Estimated DOA for the ictal segment in Figure 3. The highest
spectral peak corresponds to the direction of channel T3, with additional
peaks (∼25-30 dB lower), in the directions of channels F3, FP2, and T2/T4.

In subspace-filtered signals in Figure 5, only activations

in channels F4 and Fp2 are enhanced. The corresponding

spatial spectrum of the subspace processed data is shown in

Figure 6. Two peaks with spectral power ∼120 dB and ∼80

dB, respectively, and DOAs ∼-30o and ∼-10o, are clearly

identifiable. These approximately correspond to arrivals in

the direction of channels F4 and Fp2.

IV. DISCUSSION

We have proposed a signal subspace integration method

that combines mode decomposition with transformations (fo-

cusing) of individual modal signals and their corresponding

subspaces, to denoise scalp EEGs and improve the local-

ization of multiple correlated seizure source contributions.

In contrast to previous studies that have applied subspace

methods to eliminate artifactual contributions or decouple

independent sources in EEGs, here we applied this method

to decouple correlated ictal contributions in broad-focus

seizures. Specifically, two sets of ictal EEGs were analyzed,
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Fig. 5. Example from one pediatric patient (# 6 in Table 1): Raw (left
panel) and and denoised ictal EEG signals (middle and right panels).

Fig. 6. Estimated DOA for the ictal segment in Figure 5. The highest
spectral peak corresponds to the direction of channel T4, and a second
peak (∼40 dB lower), occurs in the directions of channel Fp2.

from adult and pediatric patients with focal epilepsy, and

non-localizable seizures via clinical EEG examination. We

compared denoising via subspace processing to PCA-based

filtering. Subspace processing improved the specificity of the

localization significantly both in comparison to raw EEG

analysis and PCA. Furthermore contributions from individual

sources (localizable to EEG electrodes) and their directions

of arrival were identifiable in spatial spectra of subspace

processed signals. Thus, this approach is promising for scalp

EEG denoising, and may be used in conjuction with other

localization algorithms, e.g., time-delay based, or even visual

examination of filtered signals. Evidently this is only a pre-

liminary study and does not include a rigorous comparison

with other subspace decomposition methods, simulations or

application to large EEG datasets. Furthermore, comparison

seizure freedom after resection of the presumed epileptogenic

zone, which is the ultimate gold standard of localization will

validate the accuracy of the proposed approach. To assess

the specificity and performance of the method, an extensive

study that includes these comparisons is necessary.
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