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Abstract— High-resolution Electrocorticography (HR-ECoG)
has emerged as a key strategic technology for recording local-
ized neural activity with high temporal and spatial resolution
with potential applications in brain-computer interfaces (BCI),
and seizure detection for epilepsy. However, HR-ECoG has
400 times the resolution of conventional ECoG, making it a
challenge to process, transmit and store the HR-ECoG data.
Therefore, simple and efficient compression algorithms are vital
for the feasibility of implantable wireless medical devices for
HR-ECoG recordings. In this paper, following the observation
that HR-ECoG signals have both high spatial and temporal
correlations similar to video/image signals, various compression
methods suitable for video/image– compression based on mo-
tion estimation, discrete cosine transform (DCT) and discrete
wavelet transform (DWT)– are investigated for compressing
HR-ECoG data. We first simplify these methods to satisfy
the low-power requirements for implantable devices. Then, we
demonstrate that spatiotemporal compression methods produce
up to 46% more data reduction on HR-ECoG data than
compression methods using only spatial compression do. We
further show that this data reduction can be achieved with low
hardware complexity. In particular, among the methods inves-
tigated, spatiotemporal compression using DCT-based methods
provide the best trade-off between hardware complexity and
compression performance, and thus we conclude that DCT-
based compression is a promising solution for ultralow-power
implantable devices for HR-ECoG.

I. INTRODUCTION

Recently, flexible electrode arrays (Fig. 1) were introduced
for recording electrocorticogram signals at high resolution
(HR-ECoG) [1].

HR-ECoG has a high temporal-domain correlation sim-
ilar to that of the conventional ECoG. However, unlike
conventional ECoG signals, HR-ECoG signals also have
spatial-domain correlation, due to the close proximity (500-
µm spacing) of the neighboring electrodes. This high spa-
tiotemporal correlation allows for the observation of brain
activity at an unprecedentedly finer granularity. However, to
accommodate such higher resolution provided by HR-ECoG,
a larger volume of data than that needed for conventional
ECoG must be generated, transmitted and stored. Current
HR-ECoG arrays already have 360 electrodes at 400 times
higher resolution than conventional 64-channel ECoG arrays,
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Fig. 1: Flexible, high-resolution multiplexed electrode array.

with the potential of scaling in the future to thousands of
electrodes [1]. This increase in data volume challenges the
feasibility of medical implants for HR-ECoG. Therefore,
simple and efficient compression algorithms are required to
realize practical medical implants for HR-ECoG.

Various compression techniques for conventional ECoG
or EEG have been proposed [2]–[4]. In [2], an H.264-based
method is used for compressing multichannel recordings of
evoked potentials, where multichannel neural video frames
are generated such that a fixed number (S) of samples from
channel 1 constitutes frame 1, and S samples from channel 2
constitutes frame 2, and so on. After N frames, where N is
the number of channels, the next S samples from channel 1
constitute frame N+1, and the frame construction continues
from channel 2 in a similar manner. This channel-by-channel
frame structure requires additional preprocessing and buffer
memory for generating each frame, since enough samples
from each channel should be accumulated to constitute even
a single frame. The channel-by-channel frame structure is a
result of the the low spatial correlation of the conventional
ECoG data, but it also complicates the real-time, low-power
implementation of this algorithm for the conventional ECoG.

A 2D-DWT-based method is used for EEG compression in
[3], using Daubechies 9/7 floating-point-filter coefficient and
arithmetic encoder; providing superior compression perfor-
mance, though with higher computational complexity. The
authors in [4] focus on time-domain 1D-DWT with channel-
by-channel multiplexing to eliminate temporal redundancy
since the conventional ECoG has high temporal resolution
but not necessarily high spatial resolution. Yet, time-domain
1D-DWT also needs a channel-by-channel frame structure,
and thus it requires a certain amount of data to be saved in
memory. Due to the necessity of increasing memory as the
number of channels increase, the scalability of these methods
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for a large number of channels is limited. HR-ECoG, on the
other hand, enables both spatial and temporal compression
so that we can get a better compression performance while
operating at a low clock frequency using smaller memory.

In this paper, we compare and simplify several
video/image compression methods; based on H.264, DCT
and DWT; for low power implantable devices using HR-
ECoG data. The proposed DCT-based spatiotemporal com-
pression methods show up to 46% more data reduction than
using only spatial compression.

The rest of this paper is organized as follows: In Section II,
we present the properties of HR-ECoG signals. In Section III,
several compression algorithms using image/video compres-
sion methods are introduced. In Section IV, performance
results of these methods for HR-ECoG and their complexity
for real-time processing are provided. In Section V, the
effect of reconstructed data and future works are discussed.
Section VI concludes the paper.

II. PROPERTIES OF HIGH-RESOLUTION ECOG

The current HR-ECoG arrays consist of 360 electrodes
organized in an 18 × 20 grid, in which each channel is
sampled at 278 Hz. HR-ECoG has higher spatial resolution
than the conventional ECoG due to the close proximity of
the electrodes in HR-ECoG. This higher resolution leads to
a high spatial correlation between neighboring electrodes.
An example of high spatial correlation between neighboring
electrodes can be seen in Fig. 2 (a), which shows the
correlation between electrodes on the data recorded during
electrographic seizures of a cat brain in vivo (e.g., the inset
in Fig. 2 shows the high correlation between electrodes
in the same row ranging from electrode 163 to 180.)1.
The correlation is lower as electrode pairs farther apart are
considered, as illustrated in Fig. 2 (a). Therefore, HR-ECoG
signals have a more prevalent spatial correlation similar
to that of the video/image signals. As a result, HR-ECoG
frames can be constructed either per electrode or per time
instance, unlike the conventional ECoG, which only favors
per channel frame construction as discussed in Section I.
Fig. 2 (b) shows the temporal correlation for frames in two
different ranges: The left graph shows the frame range 1
to 100 and the right graph shows the frame range 701 to
800. Note that although the correlation in between frames
(i.e., temporal correlation) is high for this seizure data, it is
not as high as spatial correlation as shown in Fig. 2. Yet,
as shown in Section IV, this temporal correlation will boost
the compression performance if used together with spatial
compression.

After the analog-to-digital conversion, a set of 18 × 20
samples acquired in a single time slot (i.e., one sample from
each channel totaling 360 samples) can be used directly as a
frame without any modification (i.e., the frame organization
is the same as the spatial organization of the electrodes,
similar to the relation between a scene and a video frame).

1Here, correlation values are scaled between 0 and 1, where a value of 1
shows the highest correlation between two electrodes. A higher correlation
indicates redundancy in the data and thus offers better compression.

This frame structure, which relies only on samples acquired
at the current time, eliminates the necessity of preprocessing
and buffer memory. These necessities, as pointed out in
Section I, limit the practicality of the conventional ECoG
[2], but not that of the HR-ECoG.
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(a) Spatial correlation between electrodes in the array.
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(b) Temporal correlation between frames.

Fig. 2: Correlation of HR-ECoG

III. PROPOSED COMPRESSION ALGORITHMS

In this section, we introduce common video/image com-
pression methods and describe how to apply them to com-
press the HR-ECoG signals. There are 3 representative
compression methods in video/image compression: H.264,
JPEG and JPEG2K. H.264 is a video compression standard
using motion estimation [5]. The JPEG image compres-
sion standard [6] adopts DCT as the core algorithm, while
JPEG2K image compression standard [7] uses DWT as
the core algorithm. These algorithms usually require high
computation power and large storage, and thus are not
suitable for implantable devices. In this paper, we simplify
these algorithms to satisfy the low power requirement for
implantable devices.

A. H.264-Based Compression Methods

H.264 is a widely deployed video coding standard, which
supports variable macroblock (MB) sizes such as 16 × 16,
16× 8, 8× 8 and 4× 4 [5]. Using variable MB provides a
compression gain up to 2.0× over previous standard such as
H.263+ and MPEG-4 Part 2 [8]. However, this variable block
processing complicates the motion estimation step of H.264,
with respect to previous video coding standards. Especially,
the integer-pel motion estimation (IPME) takes almost 80%
of the computation and memory access in H.264 [9].

To better fit the low-power requirements of implantable
devices, in this paper, we simplify the motion estimation
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Fig. 3: Block diagram for the proposed HR-ECoG compres-
sion architecture.

(ME) operation of the H.264 to consume less power. The
proposed ME block, shown in Fig. 3, uses only a 4× 4 MB
IPME with a horizontal and vertical ±8 search range. Every
N frames interval, called I-frame, is used as a reference frame
to predict the next frame. In I-frame, each 4×4 input block is
transformed using 2D-DCT. After the DCT, the coefficients
are quantized, zig-zag ordered and entropy coded. The rest
of the frames (the P-frames) use the inter-mode coding. In
inter-mode coding, the ME block seeks the best matching
block in the previous frame and finds its motion vector (MV).
Then the residual data (the difference between the previous
block and the current block) is passed through DCT and
quantization blocks in the same manner as that in intra-
mode coding. In motion compensation, previous frames are
reconstructed using their MVs.

B. DCT-Based Compression Methods

The DCT has been widely deployed in popular image
and video coding standards such as JPEG and MPEG. In
JPEG, 8 × 8 2D-DCT is used for converting an image into
a frequency representation [6]. However, 8 × 8 2D-DCT
has high hardware complexity. Here we propose to use a
4 × 4 Integer DCT for HR-ECoG, due firstly to the high
correlation within the 4× 4 neighboring array, and secondly
to the fact that 4× 4 integer DCT requires only adders and
shifters but no multiplier [10], thus significantly reducing
the power requirement. For the 2D-DCT, we use only spatial
compression as in JPEG. The 4×4 input is directly 2D-DCT
transformed, quantized, zig-zag ordered, and entropy coded.

If both spatial and temporal compression are to use DCT,
then the Differential Frame 2D-DCT (DF-2D-DCT) can be
used. An optional DF-2D-DCT module can be used as shown
in Fig. 3 to calculate the difference between the previous 4×4
input block and the current 4 × 4 input block to eliminate
the temporal redundancy. After the data is processed in the
DF module, the residual data is first sent to the 4× 4 DCT
block to remove spatial redundancy and then passed to the
quantization module in the same manner as in 2D-DCT.

C. DWT-Based Compression Methods

The DWT has become an important method for a variety
of signal processing applications including image compres-
sion. In JPEG2K, the floating-point Daubechies 9/7 filter and
arithmetic encoder are adopted for higher compression [7].
In this paper, we propose to use the 2-level DWT with the
biorthogonal spline 5/3 filter because the complexity of DWT
depends on the length of the filter coefficients and the number
of levels [11]. Also, the Huffman encoder is substituted for
arithmetic encoder, because Huffman coding implementation
is less complex thus power-efficient.

Note that the difference between DWT-based and DCT-
based methods is only in the transformation block in Fig. 3.
In the 2D-DWT method, we use only spatial compression
like that with JPEG2K. Input data are directly 2D-DWT
transformed, quantized, reordered and entropy coded.

IV. RESULTS

To evaluate the performance of the compression algo-
rithms for HR-ECoG, we use two separate HR-ECoG record-
ings [1] from 360 channel HR-ECoG arrays: (1) 550 seconds
of neural recording data for evoked potentials. (2) 6 seconds
of neural recording data during an electrographic seizure.
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Fig. 4: Comparison of the performance of the compression
algorithms for high-resolution ECoG.

Fig. 4 shows the peak signal-to-noise ratio (PSNR) for
various methods for different compression ratios. For both
recordings, spatiotemporal compression methods consistently
show better compression performance for a wide range of
compression ratios. For evoked potentials, around a PSNR
of 40 dB, spatiotemporal compression methods provide up
to 46% more data reduction than only spatial compression.

TABLE I: The minimum required clock frequency for real-
time compression (column 3) and the memory usage (column
4) of the proposed compression algorithms.

Algorithm Correlation fclk Memory
[kHz] [kByte]

2D-DCT Spatial 112 0.8
2D-DWT Spatial 186 1.2
DF-2D-DCT Spatiotemporal 224 1.2
DF-2D-DWT Spatiotemporal 372 1.6
H.264 Spatiotemporal 7, 100 1.6
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It is generally accepted that when the PSNR is above
40 dB, the reconstructed image is virtually indistinguishable
from the original image. Based on the two ECoG recordings
used in this paper, at PSNR values at or above 40 dB, there
is no loss of neural oscillations, and for the data presented it
is acceptable for visual analysis as demonstrated in Fig. 5.

Table I shows the complexity of the proposed algorithms.
To achieve real-time processing, each frame should be com-
pressed within 3.6 ms (a sampling of 360 channels at 278 Hz
takes around T = 3.6 ms). The clock frequency, Fclk, for
real-time processing is estimated from the memory access
rate assuming a 16-bit data bus and a memory throughput
of one sample per clock frequency (i.e., SRAM). Motion
estimation, the most time consuming task of H.264, requires
Tr = 16 clock cycles to read each 4× 4 MB and a 18× 20
array contains N = 25 MBs. Therefore, the number of clock
cycles required for motion estimation to process one frame
using ±8 search range is N × Tr × 8× 8 ≈ 25, 600 cycles.
Therefore, fclk ≥ 25, 600/T = 7.12MHz. In the DCT case,
there are 25 4×4 blocks per frame, and no search is needed
and so fclk ≥ 16× 25/T = 112 KHz. 2D-DWT processes
both the horizontal and vertical axes twice. It requires 12
cycles to read one horizontal line and for both horizontal and
vertical processing 12×20×2 = 480 cycles are required per
frame. Since we use 2-level 2D-DWT, we need an additional
7 cycles × 10 lines × 2 = 140 cycles for 2-level 2D-DWT,
resulting in an fclk = 173 kHz.

V. DISCUSSION

The effect of the proposed compression methods was
evaluated by calculating the average correlation coefficient
r between original HR-ECoG data and reconstructed HR-
ECoG data. We calculated the average correlation coefficient
for each of the reconstructed HR-ECoG data. The average
r is above 0.97 at PSNR 40 dB for each of the proposed
compression algorithms. Based on these results, we can
expect that reconstructed data above PSNR 40 dB can be
used for prediction of visual evoked responses as shown in
[1] without performance degradation. We will investigate the
effect of compression on the accuracy of predicted visual
evoked responses in future work. Due to the complexity
of H.264, it is unfavorable for low-power implant devices.
DF-2D-DCT has similar compression performance as DF-
2D-DWT, but it has a lower clock frequency and memory
requirement. In addition, 2D-DWT consumes about two
times more power than 2D-DCT [12].

In summary, the DF-2D-DCT algorithm is the most suit-
able for ultra-low-power implantable devices for HR-ECoG:
compressing the data volume to 16% for electrographic
seizure, 18% for evoked potentials, while achieving a PSNR
of 40 dB after reconstruction. For the seizure data, since a
PSNR of around 28 dB is adequate, HR-ECoG data can be
compressed to only 4% of its original size.

VI. CONCLUSION

HR-ECoG has tremendous potential for many research
and clinical applications. In this paper, based on the sim-

Original HR−ECoG 2D−DCT DF−2D−DCT

H.264 2D−DWT DF−2D−DWT

Fig. 5: Reconstructed two-dimensional data using different
compression methods @PSNR = 40 dB.

ilarities between HR-ECoG and video, we present various
compression methods for HR-ECoG. We show that better
compression performance is obtained when using spatial-
temporal compression rather than the spatial compression
with reasonable hardware complexity. In particular, we
showed that the DF-2D-DCT method is a very simple and
efficient compression algorithm that provides the best trade-
off between compression ratio and power consumption when
using implantable devices for HR-ECoG.
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