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Abstract— In the field of neuroprosthetic control, there is
an emerging need for simplified control of high-dimensional
devices. Advances in robotic technology have led to the devel-
opment of prosthetic arms that now approach the look and
number of degrees of freedom (DoF) of a natural arm. These
arms, and especially hands, now have more controllable DoFs
than the number of control DoFs available in many applications.
In natural movements, high correlations exist between multiple
joints, such as finger flexions. Therefore, discrepancy between
the number of control and effector DoFs can be overcome
by a control scheme that maps low-DoF control space to
high-DoF joint space. Imperfect effectors, sensor noise and
interactions with external objects require the use of feedback
controllers. The incorporation of feedback in a system where
the command is in a different space, however, is challenging,
requiring a potentially difficult inverse high-DoF to low-DoF
transformation. Here we present a solution to this problem
based on the Extended Kalman Filter.

I. INTRODUCTION

A. Background

This paper considers the problem of controlling a high-
dimensional robotic system in a reduced-dimensional space.
This problem occurs in neuroprosthetic hands and arms
which provide a means for amputees, spinal cord injury (SCI)
patients, and sufferers of locked-in syndrome to interact
with the world [1], [2]. Recent technological developments
promise a future where the dexterity of prosthetic hands
will approach that of the human; impressive progress has
been made in terms of human-like morphology and movable
degrees of freedom (DoF). The human hand has 22 DoF, and
the most complex robotic hand to-date, the Modular Pros-
thetic Limb (MPL, from Johns Hopkins University Applied
Physics Laboratory, Fig. 1) has 17 DoFs, of which 10 are
currently actively controllable [3].

Let us consider a simple discrete-time system where a user
specifies a command, χχχc[k] ∈ RN at time k, and the hand
follows the command using internal servo control. N refers
to the number of finger joints, and the command could be
a velocity, position, torque etc. This would allow the user
to form any desired hand shape, but would require the user
to control many DoFs simultaneously. A high-dimensional
interface may not be available to all users or may be difficult
to control. Currently, in neuroprosthetic control [1], [2],
fewer than 10 control DoFs are available. Hence, there can
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Fig. 1. MPL performing a pinch grasp of a slot object

be a mismatch between the number of DoF required to
drive a complex prosthetic, and the number of control DoFs
available. One solution is to use a low-DoF control space that
maps to the high-DoF hand space. An appropriately chosen
control space might even be more intuitive than controlling
individual finger joints for the user.

B. Low-DoF to high-DoF mapping

Low-DoF representations have been calculated from joint
movement correlations during natural human grasping using
principal component analysis (PCA) and the concept of
eigengrasps [4]. Similar dimensionality reduction has been
described for robotic grasping [5], [6]. As another example,
the MPL hand allows arbitrary Reduced-Order Control tables
to be specified to map low-DoF control space to finger joint
angles [3], [7]. The correlated patterns of joint positions are
most generally referred to as hand synergies.

PCA-based synergies would have a linear mapping to the
high-DoF space, but non-linear mappings are also possible.
The method we describe here is concerned with how to
implement feedback control when an arbitrary mapping
function, G(), is used such that

ppp′c = G(pppc) (1)

where pppc ∈ RM stands for the command position in the
low-DoF control space, and ppp′c ∈ RN is the command in
high-DoF joint space. The control space would form an
M -dimensional synergy manifold within the N -dimensional
joint space. Under this scheme, the user would be able
to form any desired hand shape within the constraints of
the synergy manifold, but would be unable to correct any
perturbations away from the manifold. External perturbations
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are inevitable in any practical robotic implementation, espe-
cially in prosthetic applications where the environment can
be highly unpredictable. Therefore, a feedback controller in
the high-DoF space is needed.

C. Feedback control

Here we consider how to implement feedback control
when the command is specified as a reduced-dimensional
velocity vvvc ∈ RM . The first consideration is to obtain a real-
time position update pppc from the low-DoF velocity vvvc. This
in turn can be converted to the high-DoF finger command
ppp′c through the synergy function (Eq. 1).

The simplest way to obtain position from velocity is to
integrate:

pppc[k] = pppc[k − 1] + vvvc[k]∆t (2)

where ∆t is the length of a discrete time step. But this
can lead to a mismatch between the commanded and ac-
tual movements whenever external perturbations are present.
Therefore, a velocity controller based purely on integration
cannot work. A better solution needs to employ feedback,
so that when the fingers run into an obstacle, the velocity-
to-position converter would be informed and the position
appropriately not incremented:

pppc[k] = pppf [k] + vvvc[k]∆t (3)

This relies on the feedback position pppf being in the low-
DoF space. Since the sensors return feedback in the high-
DoF space, we would have to use the inverse G() function
to convert the high-DoF joint position feedback ppp′f to low-
DoF feedback position pppf . This would effectively implement
a second level control loop that controls for velocity, on top
of the joint-level position servo control in the hand (Fig. 2).
The position feedback may need to be low-pass filtered to
avoid accumulation of sensor noise in the feedback loop,
although this will introduce delay into the feedback.

User v → p G() : ppp→ ppp′ Hand

G−1()

vvvc[k] pppc[k] ppp′c[k]

ppp′f [k]pppf [k]

Fig. 2. Simple feedback control scheme incorporating low- to high-DoF
mapping. Curved arrow represents low-level joint position servo-control.

A problem with this control scheme is that the inverse
may be difficult to derive for an arbitrary G() function.
Here, we propose a method that uses a state-space filter as a
controller (Fig. 3). It is based on an Extended Kalman Filter,
which obviates the need for explicitly calculating the inverse
transform and optimally filters noisy feedback and command.
The State-Space Hand Controller (SSHC) subsumes the roles
of three of the components in Fig. 2: the integrator, the
forward transform and the inverse transform. It represents
the upper layer of a two-layer hierarchical control system,

and relies on a lower layer position controller at each finger
joint.

User SSHC Hand
vvvc[k] ppp′c[k]

ppp′f [k]

Fig. 3. Control scheme incorporating the State-Space Hand Controller
(SSHC) as the upper layer of a hierarchical control system. The lower layer
is joint position servo control (curved arrow).

II. METHODS

A. The State-Space Hand Controller (SSHC)

The action of the SSHC can be thought of as preventing
deviations of the hand state from the low-DoF synergy
manifold while allowing velocity control of hand state along
the manifold. If external forces cause the hand state to deviate
from the manifold, then the feedback controller brings it
back to the nearest point on the manifold as soon as the
external influence is removed. In contrast, if external forces
move the hand state along the manifold when command
velocity is zero, then the hand state will remain at the
new position on the manifold. In other words, the SSHC
allows for compliance within the control space, but prevents
deviations from it.

The state of the system is modeled in terms of position
ppp ∈ RM and velocity vvv ∈ RM in low-DoF control space:

ppp[k] = ppp[k − 1] + vvv[k − 1]∆t+ωωωp[k] ωωωp ∼ N (000,QQQp)
(4)

vvv[k] = vvv[k − 1] +ωωωv[k] ωωωv ∼ N (000,QQQv)
(5)

This represents a random walk model encompassing the
assumptions that, in the absence of measurements to the
contrary, velocity would not change much from one time
step to the next, and that position is likely to evolve as the
integral of velocity. ωωωp and ωωωv are multivariate Gaussian
noise terms with zero mean and covariance matrices QQQp
and QQQv respectively. The complete state vector xxxk and its
associated noise covariance QQQk are defined as

xxxk ,


ppp[k − df ]
vvv[k − df ]

...
vvv[k + dc]

 QQQk ,


QQQp 000 . . . 000
000 QQQv . . . 000
...

...
. . .

...
000 000 . . . QQQv

 (6)

The form of the current state xxxk at discrete time k results
from the need to keep track of sensor feedback, which arises
from the true state at the earlier time k − df , and that the
command velocity will not be reflected in the true state until
the future time k+dc. Accordingly, high-DoF finger position
feedback ppp′f ∈ RN and low-DoF user command velocity
vvvc ∈ RM are modeled as measurements in the state-space
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filter:

ppp′f [k] = G(ppp[k − df ]) + εεεf [k − df ] εεεf ∼ N (000,RRRf ) (7)

vvvc[k] = vvv[k + dc] + εεεc[k + dc] εεεc ∼ N (000,RRRc) (8)

Command velocity is treated as measurement because it
can be noisy. εεεf and εεεc are multivariate Gaussian noise
terms with zero mean and covariance matrices RRRf and RRRc
respectively. The complete measurement vector zzzk along
with its associated noise covariance RRRk are defined as:

zzzk ,


ppp′f [k]

vvvc[k − df − dc]
...

vvvc[k]

 RRRk ,


RRRf 000 . . . 000
000 RRRc . . . 000
...

...
. . .

...
000 000 . . . RRRc


(9)

The inclusion of sensor feedback in the measurement makes
the SSHC a feedback controller. Filtering is performed using
standard Extended Kalman Filter (EKF) equations:

x̂xxk|k−1 = FFF kx̂xxk−1|k−1 (10)

PPP k|k−1 = FFF kPPP k−1|k−1FFF
> +QQQk (11)

ỹyyk = zzzk − h
(
x̂xxk|k−1

)
(12)

SSSk = HHHkPPP k|k−1HHH
>
k +RRRk (13)

KKKk = PPP k|k−1HHH
>
k SSS
−1
k (14)

x̂xxk|k = x̂xxk|k−1 +KKKkỹyyk (15)
PPP k|k =(III −KKKkHHHk)PPP k|k−1 (16)

where

FFF =


III I∆tI∆tI∆t 000 . . . 000
000 III 000 . . . 000
000 000 III . . . 000
...

...
...

. . .
...

000 000 000 . . . III

 h(x̂̂x̂xk) =


G(p̂pp[k − df ])
v̂vv[k − df ]

...
v̂vv[k + dc]


(17)

where III is an M×M identity matrix and 000 is a zero matrix,
and HHHk = δh

δx is the Jacobian of h(), calculated numerically.
The use of the EKF allows the measured position to

be in a different space than the state estimate because
the measurement prediction function h() allows use of the
arbitrary (differentiable) mapping function G() to predict the
measurement from current state. This is the step that obviates
the need for the inverse G().

The final output command ppp′c ∈ RN to the lower-layer
finger joint controllers is calculated as

ppp′c = G(p̂pp[k + dc + 1]) (18)

p̂pp[k + dc + 1] = p̂pp[k − df ] +

dc∑
d=−df

v̂vv[k + d]∆t (19)

where p̂pp and v̂vv are taken from x̂xxk|k. This command effectively
represents estimated position at time k+dc+1 in the future. It
is designed this way because dc, by definition, is how long it
takes for the fingers to get to their commanded position. Fig.
4 summarizes the information flow and timing relationships
between the state and measurement variables.

k

ppp′c

v̂vv

vvvc

p̂pp

ppp′f

− (df + dc) −df 0 dc

Fig. 4. Temporal relationships between state/measurement variable com-
ponents.

B. Simulations

As a proof of concept of the SSHC, a simple simulation of
a three-fingered hand (index and middle fingers plus thumb)
was created, grasping a simple object as shown in Fig. 1.

1) Hand and object: Each finger was simulated as a single
DoF that could move up and down in the range−1 . . . 1. With
the hand fully open, the middle and index fingers would be
up at 1 and the thumb down at −1. To grasp an object, each
finger would move toward the center at 0. Idealistic servo
control at each finger was simulated by having the actual
position ppp′a = (pmiddle, pindex, pthumb) essentially follow
command ppp′c perfectly, except the command was passed
through a 7-sample box-car filter to simulate inertia with
a 3-sample control delay (dc = 3). Sample interval was
20 ms. A slot object similar to Fig. 1 was simulated by
simply imposing a limit on how far each finger could travel,
meaning that when the finger hit the object limit, ppp′a would
stop following ppp′c. The limits were defined as (0.6, 0.1,−0.1)
for the middle finger, index finger and thumb respectively.
Noisy feedback ppp′f was simulated by adding random noise
N (0, 0.3) to ppp′a, and passed through a filter to simulate a
1-sample delay (df = 1).

2) Control space: A G() function was defined so as to
map two low-DoF control dimensions to the three fingers.
Dimension 1 was mapped to flexion of all three fingers such
that a positive command velocity vc1 in this one DoF alone
would be enough to close the grip on an object. Dimension
2 was mapped to flexion of the middle finger alone so that
a negative command velocity vc2 would allow separating it
from the index finger to form a pinch grasp similar to Fig.
1. The control space can be thought of as a 2-dimensional
manifold (a surface) within the 3-dimensional finger space,
and the hand state at any one time would be a point in this
space.

III. RESULTS

Fig. 5 shows the SSHC performing two types of grasps
of the simulated slot object which permits the index finger
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Fig. 5. Finger positions and low-DoF command velocities during simulated
grasping of a slot object

and thumb to close further than the middle finger. During
the first trial (from 0 s to 7 s), a pinch grasp, the second
low-DoF command signal is used to differentially keep the
middle finger away from the object during the grasp with the
thumb and index finger. This demonstrates the ability of the
SSHC to appropriately control the three finger joints based
on 2-DoF velocity command to achieve the desired hand
shape of a 3-DoF hand. During the second trial (from 7 s to
12 s), a full hand grasp, the control signal is chosen to create
an interaction between the middle finger and the object: the
object-imposed limit for the middle finger is higher than for
the index finger, and only vc1, which maps to both fingers,
is modulated. This demonstrates the suitability of the SSHC
for compliant control, where the hand is able to form to the
object by interacting with it.

IV. DISCUSSION

The SSHC is a novel control scheme that simultaneously
controls velocity in a low-DoF command space, and position
in a high-DoF actuator space. As a hierarchical control
system, it implements an outer control loop that uses feed-
back from individual actuators (high-DoF output space) to
maintain the position of the actuators in a coordinated pattern
(low-DoF control manifold) while allowing velocity control
along the manifold. It relies on an inner position control
loop for each actuator. The controller can use an arbitrarily
complex function to perform the mapping from low-DoF
commands to high-DoF finger space, with the only restriction
that the function be numerically differentiable.

In the particular example of prosthetic hand control, the
SSHC enables feedback control to maintain the joint config-

uration within a hand synergy subspace while giving the user
velocity control. To be useful for everyday living, prosthetics
must cope gracefully with unforeseeable interactions with
external objects, and so prosthetic actuators are typically
compliant: they will yield to external forces. This means that
there will frequently be a mismatch between commanded and
actual positions. The SSHC provides a way to cope with this
mismatch in a context where command and feedback are in
different spaces. We expect this method to not only advance
the development of highly dexterous prosthetic systems, but
also to be of utility for the general problem of relating low-
dimensional control to a high-dimensional effector.
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