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Abstract— Neuroscience research often requires direct access
to brain tissue in animal models which clearly requires opening
of the protective cranium. Minimizing animal numbers requests
only well-experienced surgeons, since clumsy performance may
lead to premature death of the animal. To minimise those
traumatic outcomes, an algorithmic approach for closed-loop
control of our Spherical Assistant for Stereotaxic Surgery
(SASSU) was designed. Controlling the surgical robot’s micro-
drill unit by audio pattern recognition proved to be a simple
and reliable way to automatically stop the automated drill
feed. Sound analysis based on the anatomical morphology of a
rat skull was used to train a Support Vector Machine (SVM)
classification of the time-frequency representations of the drill
sound. Fully automated high throughput animal surgeries are
the goal of this approach.

I. INTRODUCTION

Craniotomies in small animal surgeries are manually
demanding procedures required for neurophysiological ex-
periments to access brain matter. Common methods are
rongeuring [1] or manually drilling holes with miniature
power drills into the animal’s cranium [2], [3]. With these
manipulations, it is very easy to induce stabbing wounds in
the delicate tissue resulting in severe subcranial bleedings or
death of the animal. Fig. 1 illustrates severe damage of a
rat brain by a clumsy operator resulting in premature death
of the animal. Recent developments in medical application
bone drilling and breakthrough detection suggest to operate
drilling via force or torque controlled drills [4], [5]. However,
they require an expensive mechatronical set-up (price of
force/torque sensors) and yield a time consuming procedure
[2]. Additionally, in 2004, Boesnach et. al. developed a
method for automated sound closed loop feedback controlled
spine surgery and introduced special microphones into the
operating theatre [6]. In order to minimise drill exposure,
causing bone necrosis, tissue damage due to friction pro-
duced heat, and overcome time limitations [7], [8], a pattern
recognition algorithm to control the drill by its sound produc-
tion was designed in our study. The whole system will be
part of a fully integrated Computer-Assisted-Surgery suite
(CAS) [9] for small animals, based on our high precision
spherical assistant for stereotactic surgeries (SASSU, pro-
medTEC GmbH, Luebeck, Germany) [10].
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Fig. 1. Failed craniotomy: Power drill slipped in right hemisphere of the
rat brain. Severe damage of brain caused premature death of animal.

II. MATERIALS AND METHODS

In this section, we describe the materials and methods ap-
plied in this study, subdivided into two parts: the preparation
of small animal models and experimental setup, as well as the
signal processing, pattern recognition and analysis involved.
A number of ten experimental craniotomies in three rats were
performed and audio files recorded.

A. Preparation of small animal model and experimental set-
up

Model animals used were approx. 280g heavy Wistar
rat cadavers, left over from neurophysiological experiments,
immediately after their planned euthanasia. Procedures per-
formed implied a three point stereotactic fixation to the
SASSU’s built in frame, followed by surgical exposure of
the skull along the sutura sagitalis. To access the periosteum
and skull bone, each skin flap was tightened via medical
sewing thread to the stereotaxic frame. To clean and visualise
lambda and bregma for robotic navigation, the periosteum
was scratched away and the skull surface area at lambda
and bregma was bleached with 30% hydrogenperoxide. A
dental drill station (NOUVAQ, Goldach, Switzerland) with
a 0.8mm diameter spear point drill bit (Proxxon GmbH,
Niersbach, Germany) was fixed to a custom made adapter for
our stereotactic frame. Pre-positioning the drill bit to 2mm
ventral, 2mm anterior of lambda close to the cranium, sound
recording was started. SASSU’s z-axis stepper motor moved
the drill forward with a predefined velocity of 2mm/s, an
acceleration of 3mm/s2 and a z-axis displacement of 3mm.
Audio data acquisition was performed via an external USB
connected sound card (Edirol UA-25, Roland Corporation,
Nakagawa, Japan), using a sampling frequency of 44.1kHz
and maximum microphone gain sensitivity. Two electret
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Fig. 2. Audio signal pattern classification: a) Complete audio signal,
b) SASSU_ON class, c) DRILL_ON, d) DRILL_HITS_CRANIUM and
breakthrough.

condenser measurement microphones with linear frequency
response (MM1, Beyerdynamic, Heilbronn, Germany) were
fixed to a microphone tripod 10cm away from the specimen.
This close positioning minimised unwanted audio reverbera-
tion. Sound files were recorded with a freely available audio
processing software (Audacity). For audio processing and
data analysis, the Signal Processing Toolbox (The Math-
Works Inc, Natick, Massachusetts, USA) was used. For SVM
implementation the libSVM toolbox was used [11].

B. Signal Analysis

Experimental test data of ten craniotomies were converted
into .wav files and each split into three classes, illustrated in
Fig. 2. The raw audio signal is distinguishable into three
classes, beginning with SASSU_ON. This stage captures
SASSUs fan noise, followed by DRILL_ON and the actual
performed craniotomy event - DRILL_HITS_CRANIUM.
Each subfigure displays one second of each class. Out of ten
sound files, spectrograms with weighted Hanning windows
of 256 sample width, a shift of 128 samples and a Discrete
Fourier Transformation (DFT) length of 256 samples, were
generated. With this time-frequency representation, the spec-
tral density of the signal can be estimated [12]. Displayed
is a spectrogram of a sample audio drill procedure .wav
file in Fig. 3 (a). We used the columns of the spectrogram
as feature vectors. Each feature vector has a size of half
the DFT length. For system robustness and comparability
[13], [14], each feature vector was normalised so that its
euclidean norm equaled to one (Fig. 3 (b)). A SVM classifier
was trained on pre-recorded audio signals to calculate an
offline model. The ability of SVMs to prevent overfitting and

simple separation of classes in feature space let us choose
this method [14]. For the training data set of the SVM
feature vector, borders were set manually. Out of the classes
SASSU_ON and DRILL_ON, 500 vectors each, were used.
Class three had maximum 50 feature vectors available due to
preferable high speed drilling. For each training data matrix
a same size vector containing the class labels was build.
Depicted labels were allocated class 1,2 and 3, presenting
the states of drilling procedure. Kernel function set to radial
basis kernel (RBF). The RBF was selected, because of higher
dimensional space mapping of our samples [14] resulting in
high classification accuracy and its ability of handling a non-
linear relation between class labels and attributes [15].

(a)

(b)

Fig. 3. Generated sample audio file spectrograms: (a) Audio File Spectro-
gram, (b) Normalised Spectrogram.

Using the labels, training data and parametric kernel
options, the SVM model was calculated. Accuracy evaluation
was done with none-trained data, ensuring that training-
and test data set were disjoint. Accuracy measures were
not calculated over the sum of all feature vectors, but
each class was considered separately. To evaluate if our
classifier is failing, the class-conditional error rates have
to be analysed [16], with a confusion matrix [17] this is
possible. It visualises the performance and recognition rate
of the SVM classification of each separate class. In this, the
actual and predicted classifications are shown. To minimise
false classifications, the predicted labels were smoothed by
voting. This additional post-processing step compared five
predictions before and after the actual time index. Each
classification was replaced by a voting with respect to its
neighbours. This results in a suppression of outliers and
therefore exploiting the temporal structure of the measured
data, e.g. 111121111 = 1 or 1122222222 = 2 (Numbers
represent classes).

III. RESULTS
An example of the drill recordings spectrogram is dis-

played in Fig. 4 (a). Three different time spans with char-
acteristic frequency contents can be seen. During drilling,
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DRILL_HITS_CRANIUM, two wide frequency bands with
high energy are present. Feature vectors out of each au-
dio file spectrogram were normalised with euclidean norm
‖ x ‖2= 1 (Fig. 3 (b)) to make all audio recordings compa-
rable [14]. Classification analysis was done with the help of
a two modality method, a confusion matrix and the predicted
label plot in comparison with unprocessed original raw audio
data. The confusion matrix (Tab. I) shows the distribution
of the feature vector classification. In total 1050 feature
vectors were compared with their classification affiliation
depending on the support vectors. A set of 500 disjoint test
feature vectors, test data 1, was classified to 100% to class
SASSU_ON. Followed by another 500 test feature vectors
for class DRILL_ON, with an accuracy of another 100%.
In class three, DRILL_HITS_CRANIUM, only 50 feature
vectors were taken. This low restriction is due to the fact
that the length of the time frames is a crucial problem in
this pattern classification task. In this class, classification
accuracy reached 92% before post-processing. Out of 50
feature vectors, 46 appendant to DRILL_HITS_CRANIUM
and four were assigned to DRILL_ON. A comparison of
predicted labels and spectrogram, based on the raw au-
dio data can be seen in Fig. 4. The top plot (Fig. 4
(a)) illustrates the predicted labels of the test data over
time in seconds. For comparison, all plots have the same
x-axes scaling, time in seconds. False classified feature
vectors were underlined with an oval black ellipse. Post-
processed predicted labels, with classification voting, are
displayed in Fig. 4 (c) leading to a visible reduction of false
classified frames. Different states of the drilling procedure
are emphasised with transparent blocks. The beginning and
end white block illustrate an agreement of start and end
time of the first class, SASSU_ON, followed by DRILL_ON
and DRILL_HITS_CRANIUM. All plots show a strong
correlation in time to the associated class and event.

TABLE I
TEST SIGNAL CLASSIFICATION RESULTS: CONFUSION MATRIX OF

ACTUAL AND PREDICTED CLASSIFICATION. CLASS 1 AND CLASS 2
ACCURACY OF 100%. CLASS 3 46 FV ASSIGNED CORRECT AND 4

FALSE CLASSIFIED TO CLASS 2

Test Data 1 Test Data 2 Test Data 3
[500FV] [500FV] [50FV]

SASSU_ON 500 0 0
DRILL_ON 0 500 4

DRILL_HITS 0 0 46
_CRANIUM

Accuracy 100% 100% 92%

IV. DISCUSSION

The actual drilling procedure was performed with an
0.8mm diameter spear point drill. These drills are specif-
ically designed for hard brittle materials, pearls, glass and
ceramics. These machining abilities let us use it for bone
drilling. The high z-axis velocity made sure that no slipping
on the cranium surface occurred [2] and a smooth continuous

feed and bone chip removal [18] was assured. Previous
experiments showed a slipping drill on the cranium, due
to slow z-axis movement while using load cell evaluation
[2]. In this cases oscillations occurred. In all audio files no
oscillations were visible. Classes were selected by auditory
and experimental methodology set-ups, initialising SASSU,
switching on the power tool and bone drilling. All those
actions resulted in a clear hearable distinguishable sound.
At the event of DRILL_HITS_CRANIUM, the raw audio
file showed an amplitude increase. However, rat skulls of
different animals, like all biological structures, differ in size,
thickness and morphology. Depending on the position of the
drill on the cranium, either one enclosed or two separated
hump/s were visible. We attribute this to the fact that the
cranium, closer to the distal part of the skull, has a three
layer anatomical structure consisting of the lamina externa,
diploë and lamina interna. Drilled holes in the middle of the
skull plate showed a to be neglected small diploë. Differences
in amplitude or signal to noise ratio could not be recognised.
Comparing the raw audio signal with the spectrogram (Fig.
4 (c) and Fig. 4 (d)) at times of events, a change in signal
energy can be seen. Starting with the initialisation of SASSU,
frequencies of 0 to 4.5kHz are predominant. This was associ-
ated to the SASSU’s fan noise. At this time only the SASSU
was on. Followed by the broad band noise of the power drill
and the event of craniotomy. Normalising the feature vectors
by the euclidean norm resulted in an equalisation of all audio
recordings and made them comparable. This also enhanced
the disparity in signal to noise ratio of DRILL_ON and
DRILL_HITS_CRANIUM (Fig. 4). The confusion matrix
showed a good classification of test data 1 and 2. However,
class DRILL_HITS_CRANIUM was divergent and showed
false classified frames. Out of 50 test feature vectors four
were not associated with the correct class. We attribute this
to the similarity in signal to noise ratio of the two classes and
the few number of training feature vectors. We achieved a
recognition rate of 92%. Fig. 4 showed additional validation
of drill pattern recognition. At this step, a whole non-labeled
audio file was classified. Clearly observable, was correct
classification before and after the drill was switched on and
off. At this state, the signal magnitude is highly differentiable
between class DRILL_ON and DRILL_HITS_CRANIUM.
The first white block illustrates the co-occurence of class
1 (SASSU_ON) and the raw audio data state at the same
time. First grey block show class 2, DRILL_ON. A slight
change in signal amplitude is visible and was attributed to
vibrations due to drill bit rotation in the sub-cranial cavity.
At this state, false classified frames occur due to not clearly
distinguishable frequency distributions. However these false
classified frames occured only occasionally and hardly rep-
resent a false classification. During the drilling period the
predicted class 3, DRILL_HITS_CRANIUM is subdivided
into two classes. Class 3 is predicted as long as the drill
penetrates the lamina externa. In the subsequent process,
class 2 is dominant and again the classification changes to
class 3. We assign this peculiar sound behaviour to the three
layer anatomical rat skull structure. At the end of the second
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grey block, 11.5s in Fig. 4 (c) and (d), a smoothing out of the
signal can be seen. At this time the drill was switched of and
a machine run-out occured. Post-processing of classification
by voting resulted in Fig. 4 (b). False classified frames were
associated to its predominant class and reduced the amount
of false classified feature vectors. Overall, the distingtive
patterns were trackable in all recorded .wav files and showed
a strong connection with the three layer anatomical structure
of the rat cranium [2]. This time frequency analysis gave
a good perspective to overcome classification errors and
is the method for further investigations. In this study we
showed a classification procedure for automised, closed loop
craniotomies in small animal neuro-surgeries. Comparing the
load cell results, discussed in [2], with the audio analysis
breakthrough detection, showed a strong correlation of the
morphology of the rat cranium. The audio analysis promises
better outcomes and a higher performance. High z-axis drill
feed reduced methodology time to produce one hole from
7.5min, load cell drilling, to under a second with audio con-
trolled closed loop. Furthermore, it must be stated, that the
additional signal processing is needed for a real application.
In case of stray sounds, detailed frequency analysis is an
unavoidable necessity to prevent false classification.
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Fig. 4. Comparison of pattern recognition: (a) Predicted labels SVM
classification, (b) Voted predicted labels, (c) Complete audio test signal,
(d) Test data spectrogram

V. OUTLOOK

In this study we showed a strong link between the original
recorded audio files and several events while drilling through

rat skull bone. This approach will be used to run an auto-
mated drilling procedure in our integrated robotic assisted
surgery suite. Adaptive filtering and data cross validation
is under investigation to improve system robustness and
biological variation adaptation. This will open the path to
closed loop minimal trauma craniotomies.
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