
  

  

Abstract— Concentric-tube robots have the potential to 

become an important surgical tool for robot-assisted 

percutaneous interventions. They can provide dexterous 

operation in a small constrained environment. The kinematic 

model of a concentric-tube robot has been well developed in 

terms of accuracy, but the computational cost places limitations 

on real-time implementation. In this paper, we propose a new 

technique that will substantially improve the computational 

efficiency of evaluating the kinematics of a concentric-tube 

robot in the context of developing a control strategy without 

sacrificing the accuracy of the results. In this paper we develop 

a torsionally compliant kinematic model using global variables. 

The model is validated by comparing the results obtained by 

computing the kinematic model corresponding to an 

experimental setup of a concentric-tube robot to which a 

force/torque sensor has been mounted at its base with those 

obtained directly from the experimental setup. The results 

indicate that it is feasible to compute the kinematics of the 

concentric-tube robot fast enough to allow the position/force 

control loop to be implemented at a rate of 1 kHz. 

I. INTRODUCTION 

The concentric-tube robots are a new type of continuum 
robots. A concentric-tube robot consists of several pre-curved 
elastic tubes inserted one inside another. By translating and 
rotating two consecutive tubes relative to each other, this 
kind of robot can achieve to fairly complex 3D shapes. The 
concentric-tube robot is suitable for surgical environments 
because it can offer more than 5-DOF (degrees of freedom) 
with dimensions as small as those of a needle (typically less 
than 3mm in diameter). 

In recent years, various kinematic models of concentric-
tube robots have been proposed based on different 
considerations. The model proposed in [1] is simple but has 
limited application, since it requires that the stiffness of the 
outer tubes is nearly infinite compared to that of the inner 
tubes. Torsionally rigid models were developed in [2], with 
the assumption that the tubes only experience bending. The 
position and orientation of the robot can be obtained 
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analytically regardless of the ratios of stiffness between 
tubes, and the inverse kinematics also exists in closed form 
[3]. The importance of introducing torsion effects into the 
model was shown experimentally in [4]. A kinematic model 
that contains the torsion of the straight section of robots was 
proposed in [4]. Although the solution of this model has to be 
evaluated numerically, the Jacobian kinematics can be 
obtained in closed form [5]. A torsionally compliant model 
that includes the torsion effects of both straight and curved 
sections presents significant improvement with regard to 
accuracy [6], [7]. However, this model is computationally 
very expensive, because it involves solving a set of nonlinear 
differential equations with two-point boundary conditions. 
Additional calculations are needed because the solutions do 
not give the robot’s position and orientation directly. Other 
comprehensive models have also been developed by 
considering the friction effects in the tubes [8] or external 
loads [9]. The complexity of these models increases as more 
mechanical effects are included. Efforts have been made to 
achieve a trade-off between computational efficiency and 
numerical accuracy. In [10] a function approximation method 
was developed to implement a torsionally compliant model in 
real-time for position control with minimum loss of accuracy. 
However, the approach requires pre-computation of a large 
dataset of position and orientation information over the entire 
workspace. A Fast Jacobian-based inverse kinematic 
algorithm was presented in [11], and it was shown that the 
computational time can be reduced to 40 ms for a 3-tube 
robots.  

In this paper, we propose a technique which can 
significantly decrease the computation time to evaluate a 
torsionally compliant model in the context of implementing a 
kinematic control strategy for a concentric-tube robot. This is 
achieved by improving the model in the following aspects:  

• Reformulating the torsionally compliant kinematic 
model with global variables.  

• Measuring all the initial conditions to avoid the two-
point boundary problems. These measurements 
(which are obtained in real-time during the 
implementation of a kinematic control strategy) 
provide inputs for computing the model used in 
kinematic control of the robot. 

• Piecewise-linearization of the reformulated model.  

It is shown from the experiments that the computation 
time is reduced to less than 1ms using this technique (see 
Section III.). At the same time, the accuracy of this model 
remains almost equivalent to that of the torsionally compliant 
models proposed in the literature. 
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II. KINEMATIC MODEL 

A. Cosserat Rod 

Cosserat rod theory is extensively used in modeling and 
simulation of slender elastic objects.  The elastic tubes used 
in concentric-tube robots are actually a very good example of 
Cosserat rods in 3-D space. The recent kinematic models of 
concentric-tube robots, including our work, also follow the 
notation and formulation from the Cosserat model. Therefore, 
it is necessary to summarize some relevant background 
concerning Cosserat rod theory. 

Fig.1 shows a flexible rod in the world-frame 1 2 3{ , , }e e e . 

A body frame { 1 2 3( ), ( ), ( )d s d s d s } is attached at an arbitrary 

cross-section of the rod, where s is the arc length along the 
center line. The position of this cross-section is represented 
by the vector r(s), and the orientation is defined by the 
rotation matrix R(s) between two frames. When the rod 
experiences a distributed force f(s) and moment l(s), the 
equations of equilibrium [13] have the following form: 

                    ( ) ( ) ( ) ( ) 0n s u s n s f s+ × + =&                     (1a) 

            ( ) ( ) ( ) ( ) ( ) ( ) 0m s u s m s v s n s l s+ × + × + =&         (1b)                                                           

where the vector ( )u s = ( ) ( ) ( )
T

x y z
u s u s u s   includes the 

bending curvature ( ( )
x

u s , ( )yu s ), and the torsional 

curvature ( )zu s ; and ( )v s  = ( ) ( ) ( )
T

x y z
v s v s v s   denotes 

the shear strain ( ( )xv s , ( )yv s ) and elongation ( )zv s . Both of 

these vectors are local variables in body frames. 
In Cosserat rod theory, curvatures are interpreted as 

angular rates of change when the body frame slides along the 
center line. So they have the same expressions as the angular 
velocity in rigid-body motion: 

                                 [ ]( ) ( ) ( )T
u s R s R s= &                           (2) 

where [ ]( )u s  is the skew-symmetric matrix corresponding to 

the vector ( )u s . Similarly, the shear strain and elongation 

are analogous to displacements in rigid-body motion and 
formulated as:     

                           ( ) ( ) ( )T
v s R s r s= &                               (3) 

But in our application, these phenomena can be ignored  
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Figure 1. Cosserat rod 

which results in ( ) [0,0,1]v s = . 

B. Torsionally Compliant Model 

Torsionally compliant models show great improvements 
on accuracy, compared to previous models. The equations 
from this model also play an important role in our method, so 
a brief description is exhibited here. 

For concentric-tube robots, the following assumptions are 
made for modeling: 1) At any point along the robot, all the 
assembled tubes conform to the same curvature; 2) without 
an external force or moment, the net moment at every cross 
section of the robot is zero; 3) the bending moment generated 
by a single tube obeys a linear constitutive equation (arc 
length s will be omitted for compact expressions): 

                              ˆ( )
i i i i

m K u u= −                               (4) 

in which ˆ
i

u  and 
i

u are the curvatures of the ith  tube before 

and after the conformation, respectively. In the rest of this 

paper, the subscript i refers to the ith tube. 
i

K is the stiffness 

matrix (
i ix iy izK diag k k k =   ). Based on these 

assumptions, the bending curvature of the combined tubes 
can be formulated as: 

1

1 1

ˆ
( ) ( )

ˆ

n n
ix jxT T

j z i z i j

j jiy jy

u u
K R R K

u u
α α

−

= =

      
 =              
∑ ∑         (5) 

where ( )i sα  represents the angle difference between the 

body-frames of tube i and the 1st，and ( ( ))iR sα  represents 

the rotation matrix between those two, as shown in Fig. 2. 

The formulation of the torsional curvature is achieved by 
using equations of equilibrium (1b) from Cosserat rod theory 
and the constitutive equation (4): 

                     ˆ ˆ( )ix

iz ix iy iy ix

iz

k
u u u u u

k

 
= − 
 

&                         (6) 

By definition of ( )i sα  and izu , we can also conclude: 

1i iz zu uα = −&                                     (7) 

Equations (5), (6) and (7) comprise the torsionally 
compliant model in [6], with boundary conditions 

(0)iα (known as input) and ( ) 0izu L = . More details about 

this model are given in [6]. 

  
Figure 2. Body frames of tube i and the 1st. 
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C. Fast Torsionally Compliant Model 

As discussed above, the torsionally compliant model is a 
set of differential equations with two-point boundary 
conditions. These equations consume a large amount of 
computational time but only result in a curvature function 
with respect to the arc length. This function then requires two 
integrations to calculate the position and orientation of the 
robot [6]. In our new model, we reformulate the torsionally 
compliant model with global variables. So the two step 
calculations can be compressed into one. The bridge between 
local and global variables lies in (2) and (3) where the 

rotation matrix ( )R s can be parameterized with Euler angles: 

              1 2 3( ) ( ( )) ( ( )) ( ( ))R s R s R s R sθ θ θ=                   (8) 

Substituting (8) into (2), the expressions of curvatures using 
Euler angles are obtained [12] (arc length s will be omitted 
for compact expressions): 

                   
1 2 3 2 3

2 3 1 2 3

3 1 2

cos cos sin

cos cos sin

sin

x

y

z

u

u

u

θ θ θ θ θ

θ θ θ θ θ

θ θ θ

= +

= −

= +

& &

& &

& &

                   (9) 

In the same manner, the relationship between positions and 
Euler angles is obtained by solving (3) [12]: 

                     
2

1 2

1 2

sin
sin cos

cos cos

x
y
z

θ
θ θ

θ θ

=
= −
=

&

&

&

                                  (10) 

in which x, y, z are position coordinates in world frame. 
Applying (9) on the torsionally compliant model (5), (6) and 
(7), we get: 

                 

3 3

2

2 3 3

1

1

3 2

cos sin

cos

sin cos

sin

ix i iy i

ix

i i

i i

z

y i

u u

u u

uθ θ

θ

θ

θ

θ θ

θ

θ θ

−
=

=

= −

+

&

&

&

&

                         (11) 

                 3 13( ) ( ) ( )
i i

s s sα θ θ= −                                 (12) 

1

3 13 3 13

1 1

ˆ
( ) ( )

ˆ

n n
ix jxT T

j z i z j j

j jiy jy

u u
K R R K

u u
θ θ θ θ

−

= =

     
= − −      
     
∑ ∑

(13) 

where 3iθ represents the 3rd Euler angle of tube i. As shown 

in Fig. 2, all tubes share the same 1θ and 2θ .  

     Equations (6), (10), (11) and (13) form the new torsionally 
compliant model with Euler angles. Solving these equations 
directly gives the information of position and orientation. 
One drawback of this model is that (11) has a singular point 

at 2 90θ = ° , but in most applications that angle is not close 

to 90° .  The initial conditions of these equations are directly 

known from inputs, except one of which need to be 
calculated: 

                            (0)
iz

iz

Torque
u

k
=                               (14) 

in which Torque is the value measured from Force/Torque 
sensor attached at the proximal end of the tubes.  

    This model can be simplified (by piecewise linearization) 
to a set of linear differential equations. Considering the new 
kinematic model as a vector function 

( 1 2 3( )
iz i

f u x y zθ θ θ ), and applying the Taylor 

series expansion, we get:  

          
1 2 3

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1

T

iz i

T

u x y z

a a a a a a a

b b b b b b b s

θ θ θ  = 

   
   

  

& & && & & &

           (15) 

By solving (15), a closed-form kinematic model is obtained 
for each linear model:  

             [ ]1 2 3 ( )
iz i

u x y z g s Cθ θ θ = +       (16) 

where all entries in ( )g s  are second-order polynomials, and 

the vector C  denotes the initial conditions. The accuracy of 

(16) is very good when s is small. So in the implementation 
of full model, it is necessary to divide the whole robot into 
segments and use the linear model consecutively.  

III. EXPERIMENTS 

     For verifying the fast kinematic model, experiments were 
performed on four pairs of elastic tubes. The material chosen 
for these tubes was Nitinol, because of its shape setting 
property and linear elastic behavior. The specifications of all 
tube pairs are listed in Table I. The setup for the experiments 
is shown in Fig. 3. The outer tube was fixed, and the inner 
tube was rotated with the motorized stage. The force/torque 
sensor was installed at the base of the outer tube. An EM 
(electromagnetic) tracker was installed on the tip of the tube 
pair using a plastic adaptor. The position of the robot’s tip 
can be obtained from the EM tracking system. The effect of 
gravity as a result of the EM tracker and adaptor was 
negligible. Since the field generator has the strongest 
magnetic field in the middle front, the tip of the robot was 
positioned there to obtain the best accuracy. While this 
tracking system is accurate to within 1mm, a larger error may 
occur depending on the accuracy of the method of 
registration between the tracker and the robot. 

     It should be noted that the angles read from the rotary 
stage are not the inputs of our model. Actually, because of    

TABLE I 

PARAMETERS OF FOUR TUBE PAIRS 

a. The lengths of straight and curved sections of tubes are represented by l and L, 

respectively. The radius of curvature is denoted as r. 

Tube pair 1 2 3 4 

l(mm)
 a

 

outer/inner 
0/52.8 0/63.5 0/63.5 0/56.4 

L(mm)
 a 

outer/inner 
152.6/152.6 157/157 157/157 157/157 

r(mm)
 a 

outer/inner 
250/250 150/150 150/150 150/150 

Stiffness ratio 

outer/inner 
1/1.79 1/1.30 1/0.76 1/1.79 
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the torsional effect in the straight part of the tube pair, the 
inputs need to be calculated as: 

13 1

1

(0) 0
z

Torque
l

k
θ = + ,

23 2

2

(0)
z

Torque
Angle l

k
θ = −       (17) 

where Angle is the angular position of the rotary stage. The 
positions measured in the experiments are relative to the 
starting point of the curved section of the robot. In the 
experiments, the torque at the proximal end was measured 
and used as the initial condition for the fast kinematic model. 
For these tube pairs, the final position was obtained by 
applying the linear model on 10 mm length segments 
consecutively (16 segments in total for a robot of 157 mm 
length). The results showed that the loss of accuracy due to 
linearization is around 0.1 mm. The difference between the 
positions predicted by the fast kinematic model and the 
corresponding values measured during the experiment 
denotes the errors resulting from the model. As shown in 
Table II, these errors are similar to those in [8]. Because the 
main parameters of the tube pair used here (curvature, length 
of tube, and stiffness ratio) are almost the same as those in 
[8], we can conclude that our model possesses good 
accuracy. In terms of the computational time, the fast 
torsionally compliant kinematic model only takes 0.2~0.3 ms 
to solve. For a 3-tube robot, this time will not exceed 1ms. 
All the programs were run in Matlab R2010a, under 
Windows XP, in a computer with an Intel Xeon 3.2 GHz 
processor. In a future implementation, we expect to obtain 
further improvement in computational time by coding the 
algorithm in C++. 

IV. CONCLUSION 

Concentric-tube robots are a new technology which has 
excellent potential for applications in minimally invasive 
surgery and therapy. Several different kinematic models for 
this robot have been developed. However, most models 
suffer from the problem of computational cost in evaluation 
of the models. A new approach has been developed that 
significantly reduces the computation cost by reformulating 
the model in global variables, avoiding two-point boundary 
problems and by linearization. Experiments for several tube 
pairs having comparable parameters (lengths of the tubes, 
stiffness ratio, etc) as those reported in the literature took a  

 

Figure 3. Experimental setup for evaluating kinematic model.  

TABLE II 

POSITION ERRORS OF TUBE PAIRS 

Rotary Stage 

Angle (deg) 
0 60 120 180 240 300 Average Max 

 Pair 1  0.7 1.8 1.0 1.7 1.8 1.7 1.5 (1.0%) 
a
 1.9 

 Pair 2 1.3 0.7 3.1 8.1 3.1 1.8 3.0 (1.9%)
 
 8.1 

 Pair 3 1.4 1.8 1.9 10.0 4.0 2.6 3.5 (2.2%)
 
 10.0 

Position 

Errors 

(mm) 

 Pair 4 1.2 4.9 2.8 9.0 5.7 4.4 4.7 (3.0%)
 
 9.0 

a. Values in brackets are normalized errors (the tip errors divide by the length of robot).  

   

lot less computation time while giving similar accuracy. Our 
ongoing work is aimed at extending the approach for the 
Jacobian and also designing a model-based robust control 
scheme that will allow us to address to some extent the effect 
of uncertainty due to dynamic changes, sensor noise, etc.  
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