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Abstract— Synchrony and temporal coding in the central
nervous system, as the source of local field potentials and com-
plex neural dynamics, arises from precise timing relationships
between spike action population events across neuronal assem-
blies. Recently it has been shown that coincidence detection
based on spike event timing also presents a robust neural code
invariant to additive incoherent noise from desynchronized and
unrelated inputs. We present spike-based coincidence detection
using integrate-and-fire neural membrane dynamics along with
pooled conductance-based synaptic dynamics in a hierarchical
address-event architecture. Within this architecture, we encode
each synaptic event with parameters that govern synaptic
connectivity, synaptic strength, and axonal delay with addi-
tional global configurable parameters that govern neural and
synaptic temporal dynamics. Spike-based coincidence detection
is observed and analyzed in measurements on a log-domain
analog VLSI implementation of the integrate-and-fire neuron
and conductance-based synapse dynamics.

I. INTRODUCTION

Recent research efforts at the intersection between com-
putational neuroscience and neuromorphic engineering are
pursuing very large-scale spike-based cortical neural systems
in silicon as a means to studying synchronous neural and
synaptic dynamics underlying neural information processing
[1]–[4]. One approach [5] uses spike rate-based algorithms
to perform various computations. This approach relies upon
the readily accessible spike rate statistics as a measure
of spike activity. Another approach [6] seeks to exploit
the efficiency of spike-based computation. This approach
emphasizes that each individual spike carries information that
either creates, corroborates or corrects previous information.
Some implementations of spike-based computation perform
spike-timing dependent plasticity (STDP) [7], [8] to utilize
the relative spike timing between associated presynaptic and
postsynaptic events to determine the change in the synaptic
connection strength. STDP is used to describe how the synap-
tic connections in a network of spiking neurons evolve over
time. Another implementation of spike-based computation
recognizes that the coincidence of two or more synaptic
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Fig. 1. (a) Detailed system block diagram of an individual neuron cell
with neural spike generation and spike registration circuits [13], [14],
address-event routing (AER) translinear synaptic activation circuits [12],
and synaptic, leakage, and compartment coupling translinear conductances
[18]. (b) VLSI layout showing labelled block components.

events upon the postsynaptic membrane results in the ac-
tivation of a subsequent neural event [9]. Through a multi-
layered and interwoven construction of neurons computing
this coincidence detection of incoming synaptic events, the
neural network can implement an arbitrary function depen-
dent upon the synaptic connectivity, synaptic strength, and
axonal delay between neuron elements.

Here we present a spike event-based neuromorphic archi-
tecture for synchrony in neural computation by coincidence
detection of synchronously converging presynaptic action
potentials. To this end, we have developed the hierarchical
address-event routing integrate-and-fire transceiver (HiAER-
IFAT) system as described and introduced in [10] for
scaleable, generalized, neural spike-based computation. We
present results of synchronous neural detection illustrating
the configurability of neural and synaptic dynamics for
one neuron in the analog integrate-and-fire array transceiver
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(IFAT). Specifically, we show measurement results illus-
trating neural event coincidence detection through variation
of parameters governing synapse type, synapse strength,
and axonal delay. The presented measurements for a single
addressed neuron can be extended to all 216 neurons on the
chip in a scalable and low-power architecture for synchrony
detection and temporal coding based applications.

II. SYSTEM ARCHITECTURE

We have developed the HiAER-IFAT communication ar-
chitecture for routing neural events in a scaleable recon-
figurable large-scale neuromorphic system. The scaleable
hierarchy allows for large-scale neural system implementa-
tion while minimizing queue occupancy [11]. The neural
events are routed in real-time through synaptic connec-
tions with configurable parameters governing connectivity,
synaptic strength, and axonal delay. Each analog chip is
partitioned into two halves, each with individually controlled
dynamics governing four types of synapse input activation
dynamics and synapse reversal potential in addition to global
parameters for membrane threshold values, etc.

All 216 neurons on the chip are individually addressable.
And the spike events that they generate are served sequen-
tially through arbitration for transmission of address-events
over two communication buses. Here we experimentally
characterize a single addressed neuron in the HiAER-IFAT
architecture, complete with two membrane compartments
and with neural and synaptic activation circuits, as described
in Figure 1. Each synapse implements time-multiplexed
conductance-based dynamics in the log-domain with a com-
pact three transistor circuit [12]. Each neuron implements
two-compartment leaky integrate-and-fire (IFAT) dynamics
[10], [13], [14].

III. BIOPHYSICAL MODELS

A. Time-multiplexed conductance-based synapse dynamics
Coincidence detection of postsynaptic events upon the

neuron membrane occurs when two or more events arrive in a
short time window “coincidentally” to trigger a neural event.
In order to ensure that only coincident postsynaptic events
integrate together upon the neural member, the conductance
(G) -capacitance (C) integration time constant must be short
and comparable to the synapse activation time constant.
In addition to triggering a coincident neural event through
the mapping of several synaptic connections to a single
neuron, we incorporate axonal delays through the synaptic
connectivity in our system by HiAER routing [10]. These
axonal delays allow the coincidence detection to become very
input specific through temporal coding [15]–[17].

The postsynaptic current contribution for a single
conductance-based synapse can be expressed by a con-
ductance G modulated by the potential difference between
reversal potential Erev and membrane potential V :

Isyn = G(Erev − V ) (1)

where the conductance G can be further expressed as:

G = G0(t) ∗ f(t) (2)
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Fig. 2. (a) Block diagram showing the conductance-capacitance relationship
for a single synaptic conductance connecting to the membrane capacitance
C, where the conductance strength G0 is modulated by the f(t) function
resulting in G(t) and through integration upon C, V (t). (b) Block diagram
showing the conductance-capacitance relationship for multiple conductance
synapses. (c) Time-varying G(t) from multiple conductance-synapses show-
ing coincidence detection when multiple input spike events coincide and are
net excitatory.

where ∗ denotes convolution in time, G0(t) denotes the
pulse-width modulated synaptic conductance strength, f(t)
denotes the synaptic input event activation dynamics, which
we model with an instantaneous rise time and finite expo-
nential decay fall time such that

f(t) = e−t/τ (3)

and as illustrated in Fig. 2. The coincidence of several
postsynaptic events is illustrated in Fig. 2(c).

We implement these dynamics in time-multiplexed
conductance-based synapses [12] where each synapse is
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composed of three parameters. The nominal conductance G0

is digitally controllable in graded fashion while the other two
parameters governing reversal potential Erev and activation
time constant Vτ are digitally selectable and globally con-
figurable as one of four synapse types unique for each half
of the chip.

B. Neural membrane dynamics

Neurons are implemented as two-compartment leaky
integrate-and-fire neurons with two synaptic inputs per com-
partment and dynamics,

C1
dVi1
dt

=
∑
j

Iij1 + gL(EL − Vi1)

+gcomp(Vi0 − Vi1) (4)

C0
dVi0
dt

= f(Vi0) +
∑
j

Iij0 + gL(EL − Vi0)

+gcomp(Vi1 − Vi0) (5)

where Cn denotes the membrane capacitance for neuron
compartment n, f(Vin) denotes the nonlinear positive feed-
back dynamics, Iijn denotes the synaptic current contri-
butions, gL denotes the leak conductance, EL denotes the
leak reversal potential, and gcomp denotes the conductance
between compartments.

We implement the positive feedback dynamics f(Vi0)
through a single transistor operating in subthreshold resulting
in exponential nonlinear term in the feedback current. We
fix the configurable global parameter, threshold voltage Vth,
which provides the threshold-initiated regeneration amplifi-
cation in this circuit [13], [14].

IV. LOG-DOMAIN MAPPING

We model the linear conductor for each synapse and
neuron with a single transistor operating in subthreshold by
virtue of the log transform of its node voltages [18]. The
subthreshold drain current can be expressed as

i = I0
W

L
eκVg (e−Vs − e−Vd) (6)

where Vg is the gate node voltage, Vs is the source node
voltage, and Vd is the drain node voltage with each expressed
in terms of VT . Transformed to the “log-domain” or “pseudo-
voltage domain”, each “pseudo-parameter” describes the
associated signal in log-domain [19], [20]

i = G∗(E∗
rev − V ∗

m) (7)

with pseudo-parameters conductance G∗ = I0
W
L e

κVg , mem-
brane voltage V ∗

m = −e−Vs , and reverse potential E∗
rev =

−e−Vd .
Thus we can express the postsynaptic current contribution

from synapses of type (θ) to be:∑
j

Isynj =
∑
j

∑
k

g
(θ)
ij (tkj )e

−(t−tkj )/τ
(θ)

(E(θ)
ij − Vi) (8)

where i denotes the post-synaptic neuron, j denotes the pre-
synaptic neuron, k indicates the spiking event number, gij is

event detected

V0

sync
Inack
Inreq

Outreq

Outack

Vu1

Vu3

Fig. 3. Oscilloscope traces showing periodic synaptic input train of
excitatory synaptic events with constant delay between events and varying
synapse conductance strength amplitude resulting in neural event activation.
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Fig. 4. Oscilloscope traces showing periodic synaptic input train of
excitatory synaptic events with constant synaptic conductance strength
amplitude and varying delay between events resulting in neural event
activation.

the conductance strength between neuron i and neuron j for
synapse type (θ), τ indicates the decaying exponentials in
the conductance dynamics profile for synapse type (θ), Eij
is the reversal potential between neuron i and neuron j, and
Vi is the membrane voltage of post-synaptic neuron i.

The decaying exponential synaptic input activation dynam-
ics (3) is implemented in the log domain as a linear decay
by constant current draining the synapse gate capacitance
[12]. The current circuit realization does not implement
transcapacitance [18], but instead uses constant capacitance
in the log domain leading to nonlinear membrane dynamics
in the current domain, with faster onset and slower decay
times.

V. RESULTS

We test three scenarios to verify integration of neural
events and coincidence detection. First we input a periodic
stream of regularly spaced excitatory synaptic events into al-
ternating neural compartments with varying synapse strength
G0 as seen in Fig. 3. We observe that only the sequences
of synaptic events with sufficient synapse strength such that
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Fig. 5. Oscilloscope traces showing periodic synaptic input train of
excitatory and inhibitory synaptic events resulting in neural event activation
with additional inhibitory synaptic events resulting in removal of neural
event activation.

the time of decay is greater than the time between pulses
results in integration of events upon the neural membrane
and subsequent event activation. Next we input a periodic
stream of excitatory synaptic events with equal strength into
alternating neural compartments with varying delay between
events as seen in Fig. 4. We observe that only the sequences
of synaptic events that occur with delay small enough to
allow for integration of events upon the neural membrane
results in subsequent event activation. Finally, we input a
periodic stream of synaptic events with two packets of events
with short delay inbetween as seen in Fig. 5. The first packet
is comprised of five excitatory events and the second is the
same except the fourth event is inhibitory. We observe that
a single inhibitory event is sufficient to prevent integration
of events upon the neural membrane resulting in subsequent
event activation.

VI. CONCLUSION

We have presented and analyzed coincidence detection of
convergent presynaptic action potentials and its effect on
synchronous postsynaptic action potential firing. To this end
we have described the architecture of a two-compartment
conductance-based integrate-and-fire transceiver array (IFAT)
for scaleable neural dynamics, and presented experimental
results characterizing two-compartment membrane voltage
and synaptic conductance dynamics for a single addressed
neuron in the architecture. We outline the biophysical models
of the synapse and neural dynamics that results in integration
of events and coincidence detection. Robust postsynaptic
output spike events were observed under varying presynap-
tic conductance, spike timing, and multiplicity, while syn-
chronous inhibition was effective in eliminating postsynaptic
firing.
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