
A Superposable Silicon Synapse with Programmable Reversal Potential

Ben V. Benjamin1, John V. Arthur2, Peiran Gao1, Paul Merolla2, and Kwabena Boahen1

Abstract— We present a novel log-domain silicon synapse de-
signed for subthreshold analog operation that emulates common
synaptic interactions found in biology. Our circuit models the
dynamic gating of ion-channel conductances by emulating the
processes of neurotransmitter release–reuptake and receptor
binding–unbinding in a superposable fashion: Only a single
circuit is required to model the entire population of synapses
(of a given type) that a biological neuron receives. Unlike
previous designs, which are strictly excitatory or inhibitory,
our silicon synapse implements—for the first time in the
log-domain—a programmable reversal potential (i.e., driving
force). To demonstrate our design’s scalability, we fabricated
in 180nm CMOS an array of 64K silicon neurons, each
with four independent superposable synapse circuits occupying
11.0×21.5 µm2 apiece. After verifying that these synapses have
the predicted effect on the neurons’ spike rate, we explored
a recurrent network where the synapses’ reversal potentials
are set near the neurons’ threshold, acting as shunts. These
shunting synapses synchronized neuronal spiking more robustly
than nonshunting synapses, confirming that reversal potentials
can have important network-level implications.

I. LOG-DOMAIN NEURONS AND SYNAPSES

Neuromorphic engineering aims to emulate computations
carried out in the nervous system by mimicking neurons
and their interconnectivity in VLSI hardware [1]. Having
succeeded in morphing visual and auditory sensory systems
into mixed-analog-digital circuits, engineers are entering the
arena of cortical modeling [2], [3], [4]; an arena in which
neuromorphic systems’ parallel operation and low energy
consumption give them distinct advantages over software
simulation. The neuron model of choice for large-scale
cortical simulations [5], the quadratic integrate-and-fire (QIF)
neuron, has been implemented successfully with log-domain
circuits [6], [7], [8], [9]. The corresponding synapse model,
a conductance tied to a programmable reversal potential, is
however yet to be fully implemented in the log-domain.

Existing log-domain conductance-based silicon synapse
designs are either purely excitatory or purely inhibitory [6],
[10], [11]. In contrast, biological synapses behave like a con-
ductance that drives the membrane toward a fixed voltage—
the reversal potential—that can be excitatory (much higher),
inhibitory (much lower), or shunting (near the membrane’s
spike threshold). Shunting synapses have been shown to
synchronize a heterogeneous population of neurons more
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Fig. 1. Superposable silicon synapse, together with biasing and neuron
circuitry (gray). The cleft (MC1-2) models spike-triggered neurotransmitter
release and reuptake: MC1 discharges CC to ground (release) and MC2
charges CC back up to VDD (reuptake). The receptor (MR1-4) models
receptor binding and unbinding: MR1 discharges CR to a limit set by
MR2 (binding) and MR3 charges it back up to VDD (unbinding). The
diffusor (MG1-4) models spatial decay: MR4’s current, mirrored by MA1-2,
spreads through MG1-3 into a hexagonal grid. The reverser (ME1-5) models
a conductance and its reversal potential: MG4 sets ME4’s & ME5’s currents
(conductance) and ME3 sets how much the former’s current is scaled
(reversal potential). These currents drive the neuron’s capacitor (Cm),
together with a leakage current (MS7), to produce an output current (MS1).

robustly by slowing down those that spike too fast and
speeding up those that fire too slowly [12].

To remedy the deficiency in existing log-domain silicon
synapse designs, we developed a new silicon synapse by
adding a reversal-potential subcircuit to our previous de-
sign [6]. In this paper, we present the synapse’s design and
test results (Section II), theoretically predict and verify its
effect on the QIF neuron’s spike rate (Section III), and con-
firm that the highest degree of synchrony is achieved when
the synapse is shunting (Section IV). The paper concludes
with a brief summary.

II. SYNAPSE CIRCUIT

The effect a population of synapses with total conductance
gsyn and a common reversal potential erev has on the
neuron’s membrane potential vm is described by

τmv̇m = −vm + gsyn(erev − vm) (1)

where τm is the membrane time-constant. The linear term,
−vm, models a leakage conductance (normalized to one)
with its reversal potential set to zero (voltage reference). vm
is normalized by the threshold voltage and gsyn is normalized
by the leakage conductance. Notice that the synaptic input
consists of a current source (gsynerev) and a conductance to
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ground (gsyn), similar to excitatory and inhibitory synapses,
respectively. In the log-domain, these circuit elements are
realized by tying a transistor’s source or drain, respectively,
to the silicon neuron’s membrane capacitor [6].

The dynamic gating of synaptic conductances is modeled
by emulating neurotransmitter release from axonal terminals
and binding to postsynaptic receptors as was done previ-
ously [14], [6]. Spikes are fed into a pulse-extender that
models how long neurotransmitter remains in the synaptic
cleft by producing trise-wide unit-amplitude pulses, prise(t)
(Fig 1, cleft). These pulses feed a lowpass filter that models
receptor binding–unbinding by decaying at a rate, 1/τsyn,
proportional to the unbinding rate (Fig 1, receptor). Thus

τsynġsyn = −gsyn + gsat min(
∑
i prise(t− ti), 1)

where ti are spike times and gsat is the saturation value—
attained when all the synapses’ postsynaptic ion-channels
are open—each synapse is assumed to contribute equally.
Overlapping pulses do not sum—they yield an elongated
unit-amplitude pulse that starts with the first and ends with
the last. Hence, gsyn = (1− exp(−triseftot))gsat in steady-
state for Poisson spike trains with total rate ftot. This output
feeds the reversal-potential subcircuit (Fig 1, reverser).

Analysis confirms that the reversal-potential subcircuit
behaves as described by Eq 1—and yields the mapping
parameters needed to convert neuronal parameters into bias
currents. The membrane capacitor’s current is

CmV̇m = IE5 − IE4 + IS7

=
αE5

αE1
IG4 −

αE4αS1

αE2αE1

IE2IE1

IS1
+ αS7Ilk

where In and αn are transistor Mn’s current and sizing
ratio, normalized by the biasing transistors’ sizing ratio (e.g.,
IS7/αS7 = Ilk). IE4 was obtained by applying the translin-
ear principle: (IE2/αE2)(IE1/αE1) = (IE4/αE4)(IS1/αS1).
With αE1 = αE5, IE2 = IE3 = αE3Ierev , IE1 = IG4 and
V̇m = −UT İS1/(κIS1), where UT is the thermal voltage
and κ is the subthreshold slope-coefficient, we obtain

CmUT
καS7Ilk

İS1 =
IG4

αS7Ilk

(
αE4αS1αE3

αE2αE1
Ierev − IS1

)
− IS1

Setting vm = IS1/(γIlk), where γ is a normalization factor
(derived in [13]), yields

pτm
Ilk

v̇m = −vm + pgsyn

IG4

Ilk

(
perev

Ierev
Ilk
− vm

)
(2)

with mapping parameters

perev = αE4αS1αE3/(γαE2αE1) and pgsyn = 1/αS7

Their values are determined either from the device dimen-
sions or through a calibration procedure (similar to [13]); the
latter yields more accurate results. Equating Eq 1’s neuronal
parameters to Eq 2’s coefficients yields

Ierev = erevIlk/perev and IG4 = gsynIlk/pgsyn

This model-circuit mapping enables us to program the bias
currents appropriately.
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Fig. 2. Synapse circuit’s measured waveforms. a. Increasing the rise time
(trise) makes the conductance peak later—and increases its peak value
(τsyn = 25ms). b. Increasing the saturation value (gsat) rescales the
entire waveform (τsyn = 25ms, trise = 5ms). c. Increasing the time
constant (τsyn) slows down the rise as well as the fall (trise = 50ms).
d. Increasing the reversal potential (erev) cause’s the conductance’s effect
on the membrane potential to reverse when erev = vm = 0.1 (τsyn =
50ms, trise = 100ms, τm = 25ms).

The synapse circuit’s conductance and membrane potential
waveforms varied as expected when we programmed various
values for its model parameters (Fig 2). Their mapping
parameters were used to set MC2’s, MR2’s, MR3’s, and
ME3’s gate voltages through biasing transistors driven by
an on-chip DAC (see Fig 1). Four sets of DACs program
each of a silicon neuron’s four superposable synapse circuits
independently, but these biases are shared by all synapse
circuits on that chip. IG4 and IS1 were mirrored by transistors
(in parallel with ME1,5 and MS1) connected to an on-chip
ADC through a scanner. For trise � τsyn, the conductance
peaks at gsattrise/τsyn (Fig 2a,b). For trise � τsyn, it plateaus
at gsat (Fig 2c). Its effect can be excitatory (erev > vm),
inhibitory (erev < vm), or shunting (erev ∼ vm) (Fig 2d).

III. QIF NEURON’S CONDUCTANCE-FREQUENCY CURVE

When we drive a QIF neuron with a synaptic population
it obeys the differential equation

τmv̇m = −vm + v2
m/2 + iin + gsyn(erev − vm) (3)

v2
m/2 models positive feedback provided by sodium chan-

nels; iin is an input current (normalized by the threshold
voltage times the leak conductance) that we set to zero. This
model is a 1D dynamical system with bifurcation parameter
gsyn (i.e., it determines the number of fixed points) (Fig 3a).

To find the the conditions under which the neuron spikes,
we determine the values for gsyn at which bifurcations occur.
They occur when the minimum point of the neuron’s phase
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Fig. 3. Conductance-driven QIF neuron’s phase (v̇(v)) and spike-rate
(f(gsyn)) curves. a. As gsyn increases, the phase curve’s minimum point
follows an inverted parabola (dashed line) centered at v = erev, causing
the fixed points (circles) to disappear and reappear. b. As erev increases,
the spike rate reaches a higher plateau that occurs at a higher gsyn value
and the upper bifurcation point moves rightward.

curve (vmin, τmv̇min) touches the x-axis. This minimum
point is obtained by equating dv̇m/dvm to 0 and substituting
the result into Eq 3

vmin = 1 + gsyn, τmv̇min = gsynerev − (1 + gsyn)2/2

It touches the x-axis (i.e., τmv̇min = 0) when gsyn’s value is

g∗±syn = (erev − 1)±
√

(erev − 1)2 − 1 for erev > 2

For gsyn < g∗−syn, two fixed points exist: an upper unstable
one and a lower stable one, at which the neuron rests. For
g∗−syn < gsyn < g∗+syn, these fixed points disappear, and the
neuron spikes. For gsyn > g∗+syn, the fixed points reappear and
spiking ceases. When erev < 2, τmv̇min’s maximum value,
erev(erev/2 − 1), is less than zero. Hence the fixed points
never disappear and the neuron never spikes.

To calculate the interspike interval T , we integrate Eq 3
∫ T

tref

dt = τm

∫ ∞

0

1
v2
m/2 + gsyn(erev − vm)− vm

dvm

⇔ T − tref = τmh(gsyn)

where tref is the refractory period and

h(gsyn) =
π + 2 arccot(

√
2erevgsyn/(1 + gsyn)2 − 1)

(1 + gsyn)
√

2erevgsyn/(1 + gsyn)2 − 1

Inverting T yields the conductance-driven spike rate

f(gsyn) = 1/(τmh(gsyn)+tref) for g∗−syn < gsyn < g∗+syn (4)

The rate rises sharply from zero as gsyn increases beyond
g∗−syn, peaks when gsyn is a little less than erev−1, gsyn’s value
when τmv̇min is maximum, and drops precipitiously to zero
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Fig. 4. Synapse circuit’s measured rate-conductance curve. An excellent
match is obtained between theory (lines) and experiment (dots). And, as
expected, the neuron did not spike for erev = 1 or 2. The model’s parameter
values were τm = 15ms and tref = 5ms; the fitted values were 0.96τm,
1.00tref , 0.96erev, and 1.00gsyn + 0.3.

when gsyn approaches g∗+syn (Fig 3b). The peak occurs earlier
than expected because the phase curve’s rightward movement
makes vm travel further and further away from zero (reset).
For erev � 1, spiking starts at g∗−syn ≈ 1/(erev − 1)/2 and
stops at g∗+syn ≈ 2(erev − 1). Quadratic positive-feedback is
unable to overcome conductances larger than this. They shunt
the membrane potential to erev strongly enough to prevent
spiking—even when erev � 1—a counterintuitive result.

We compared these theoretically predicted f(gsyn) curves
with measurements made by varying MR2’s gate voltage
and recording the silicon neuron’s spikes (Fig 4). MR1

was kept on continuously by inputing spikes at intervals
shorter than trise (set to 30ms), thereby pinning gsyn to gsat.
The spike rate varied as expected, with lower and upper
bifurcation points, steep onset and offset, and peak spike rate
all closely matching the theory. These results also validated
the calibration procedure: The fitted parameter values were
within 4% of the programmed ones.

IV. SYNCHRONY

The f(gsyn)-curves’ extended plateau makes the neuron’s
spike rate relatively independent of the amount of synaptic
input, which should promote synchrony in a heterogeneous
population by homogenizing spike rates. Indeed, this has
been demonstrated in a recurrent network model of gamma-
band (30-80Hz) synchronization: Coherence (normalized
pairwise cross-correlation) was highest when synapses were
shunting [12]. Shunting also rescued neurons silenced by
inhibition, increasing the number of active neurons by 100%.

We confirmed that synchrony is more robust when
synapses are shunting (Fig 5). A recurrent neural network
model with circularly symmetric local arbors was imple-
mented in a 256× 256-array of silicon neurons on a single
chip. Point-to-point connections were realized by multiplex-
ing spikes using the address-event representation and arbors
were realized by relaying analog currents from neuron to
neuron with a programmable decay factor λ = 0.8 (Fig 1,
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Fig. 5. Spike rasters from a recurrent network of 65,536 silicon neurons.
Synchrony improves as erev changes from inhibitory (0.1) to shunting (1.0).
The rhythm’s frequency and the number of active neurons increase as well.
Neurons firing faster than twice the mean rate were excluded (τm = 15ms,
tref = 1ms, iin = 0.6, gsat = 40, τsyn = 10ms, τrise = 5ms).

diffusor), both as described previously [6].
The model’s parameters were mapped onto the chip’s

single set of circuit biases using its silicon neurons’ and
synapses’ median mapping parameters. This approach re-
sulted in a heterogenous implementation of the model whose
median parameter values matched the specified values but
whose variance was determined by device mismatch [13].
For instance, all neurons received a lognormally distributed
tonic current with median iin = 0.6 and CV = 22.5%
(standard deviation/mean) [13]. This degree of heterogeneity
is significantly higher than the previous study’s, whose tonic
current was normally distributed with CV = 10% [12].

We varied erev from inhibitory (0.1 to 0.5), to shunting
(0.5 to 1.0), to excitatory (1.0 to 3.0) and found coherence
to be highest in the shunting region (Fig 6). For iin > 0.5, the
theory predicts that the f(gsyn) curve starts with a nonzero
spike rate (at gsyn = 0) that can either decrease or increase
as gsyn increases, depending on erev. The slope is flat near
gsyn = 0 when erev ≈ 1, because the f(gsyn) curve still
peaks near gsyn = erev − 1 when iin 6= 0. Hence, we
expect the spike rates to be maximally homogenized when
erev ≈ 1, enabling the neurons to synchronize with maximal
coherence. Indeed, coherence peaked when erev was 0.9.
As erev increased from 0.3 to 0.9, the rhythm’s frequency
increased from 15Hz to 70Hz and the number of active
neurons increased from 3,789 to 9,671.1

V. SUMMARY

We presented the first log-domain silicon synapse with
a programmable reversal-potential, realized with just five
transistors. Our’s is a pure log-domain design, unlike a
recent proposal, which requires a resistor [15]. In addition to
reversing its effect when the membrane potential crosses the
reversal potential, our superposable synapse circuit captures
a synaptic population’s dynamic behavior through its pro-
grammable rise time, decay constant, and saturation value.
We proved analytically that the QIF neuron’s f(gsyn) curve
is nonmonotonic—unlike its f(i) curve [9], [13]—and con-
firmed that silicon neurons driven by our new silicon synapse

1Only a small fraction were active because the highly excited neurons
suppressed their neighbors. The chip’s kill bits, which can be set to disable
neurons, were not utilized in this study.
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Fig. 6. Coherence (squares) peaked at erev = 0.9 whereas the number of
active neurons (discs) increased monotonically with erev.

displayed this behavior. Finally, we demonstrated that the
silicon synapse synchronizes silicon neurons most robustly
when it is shunting, confirming that reversal potentials can
have important implications at the network-level.
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