
  

 

Abstract— The right level of abstraction for a model 
mimicking a neural function is often difficult to determine. 
There are trade-offs between capturing biological complexities 
on one hand and the scalability and efficiency of the model on 
the other. In this work, we describe a nonlinear Laguerre-
Volterra model of the synaptic temporal integration of input 
spikes to postsynaptic potentials. This model is then efficiently 
implemented using analog subthreshold circuits and can serve 
as a foundation for future large-scale hardware systems that 
can emulate multi-input multi-output (MIMO) spike 
transformations in populations of neurons. The normalized 
mean square error in estimating real data using the circuit 
implementation of this model is less than 15%. The model 
components are modular and its parameters are adjustable for 
modeling temporal integration by neurons in other brain 
regions. The total power consumption of this nonlinear 
Laguerre-Volterra system is less than 5nW.  

 

I. INTRODUCTION 

Understanding high-level brain functions, such as 
memory, learning, and cognition has long been a goal of the 
neuroscience community. Over the past decades, the quest for 
creating artificial systems that mimic these important 
functions has become a major challenge for the engineering 
community. The motivations for creating such systems are 
manifold; from implementing cognitive hardware systems 
which interact with their environments and solve real-time 
tasks to designing implantable prostheses that replace 
cognitive brain functions. However, hardware 
implementations are yet to accomplish the robustness and 
parallel processing capabilities of the brain together with its 
compactness and power efficiency.  

Synapses are the fundamental signal processing units in 
the brain that transform temporal spiking patterns into analog 
postsynaptic potentials. Many complex processes such as 
neurotransmitter release and diffusion, receptor kinetics, and 
plasticity contribute to this transformation. Despite our 
knowledge of these mechanisms and the role they play in the 
neuron-to-neuron communication, it is still unknown how the 
collective activity of populations of neurons and synapses 
results in higher level brain functions [1]. Therefore, the level 
of details that have to be included in a model is difficult to 
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assess. There is a tradeoff between the biological complexity 
included in a model and its scalability and efficiency.   

In this work, we want to capture the nonlinear 
transformation of spike inputs in the hippocampus from CA3 
neurons to postsynaptic potentials by CA1 neurons. The 
hippocampus has been shown to be essential for long-term 
memory formation and capturing the temporal integration 
performed by the CA1 neuron is an important nonlinear 
mechanism in this process [1]. This mechanism is modeled 
using the Laguerre Expansion of Volterra Kernel method 
which is employed to convert spike inputs into subthreshold 
postsynaptic potentials [2].  

This modeling approach was chosen for various reasons. 
First of all, this model allows us to replicate and predict the 
transformation of the spike inputs to the postsynaptic 
potential outputs in real-time and for any brain region, simply 
by adjusting its parameters. Even though the complex 
biological mechanisms underlying this transformation are not 
modeled in detail, the nonlinear interactions performed by the 
neuron and its synapses can still be captured. Furthermore, 
the system is efficiently implemented in hardware using 
filters, multipliers and gain cells. Because of its modularity, 
the implementation can easily be extended to a large scale 
system. The model parameters are programmable and 
adaptive processing techniques can be applied to train them 
[3]. 

In the following sections, we outline the steps taken to 
efficiently implement a second order nonlinear Laguerre 
Volterra model in hardware using subthreshold CMOS 
analog circuit design.  

 

II. MODEL DESCRIPTION 

A. Experimental Procedure 
The postsynaptic potential (PSP) data used for training 

and testing of the proposed Laguerre-Volterra model was 
obtained from whole-cell patch-clamp recordings [4].  CA1 
pyramidal neurons were synaptically stimulated with Poisson 
random interval trains (RITs) through the Schaffer collaterals 
to mimic the spiking behavior observed in CA3 hippocampal 
neurons. The mean frequency of stimulation was 2Hz and the 
stimulation intensity was adjusted so that no action potentials 
were induced. The PSPs were then recorded at the soma of 
the cell.  
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Figure 1: Percent NMSE vs. the Number of Laguerre Basis Functions for 

Different Orders of Nonlinearity 

B. PSP Estimation and Prediction Using LEV  
The modeling approach used here to estimate and predict 

the neuron’s postsynaptic response is similar to the one in [1] 
and [4]. In this work, the goal is to use a similar model to 
describe the nonlinear transformation from presynaptic spike 
to postsynaptic potential that is optimized for hardware 
implementation. In [5], the continuous-time Laguerre 
polynomial expansion method in the time domain was 
discussed. A weighted sum of orthonormal Laguerre basis 
functions (LFs) can be used to “approximate causal signals 
that asymptotically decay in an exponential manner for large 
t” [5]. The Laplace transform of a LF of order n is:  

 (1a) 

 (1b) 

 (1c) 

 
Therefore, this suggests a frequency domain implementation 
of H(s) as shown in Fig. 1, in which the impulse response at 
each node is a LF and p determines the LF decay rate.  

As mentioned above the PSP has a nonlinear dependence 
on the input action potential. The linear system of Fig. 1 will 
be insufficient in capturing the nonlinearities that occur on 
presence of paired pulses, triplets, etc.  Therefore, the model 
has to be expanded to an LEV (Laguerre Expansion of 
Volterra Kernels) scheme [1] in which a time-domain 
estimation is described by:  

 

 
 

                          (2a) 
 

where:                      (2b) 

is the convolution of the nth order LF with the input x(t) 
(here, the random interval input spike train), cm are weighting 
coefficients that can be found using linear estimation 
methods.  

 
Figure 2: Block Diagram of Frequency Domain Laguerre Functions 

 
Figure 3: Block Diagram of a 2nd Order LEV Model with 4 LFs 

In this work the Moore-Penrose Pseudo-Inverse is used to 
find cm, which provides a least square fit of the output of the 
LEV to the training data set of PSPs [5]. L is the number of 
LFs employed in the model. Equation (2) can be 
implemented in hardware using the linear system of Fig. 1 
and the multipliers and weighting adders in Fig. 2. It is also 
possible to use the sum of two LEVs with different values of 
p to estimate the response of a system that exhibits a fast as 
well as a slow decaying component [6].  

C. Optimization of the LEV Model for Hardware 
Since the complexity of the system grows with the 

number of LFs employed and the degree of nonlinearities 
included, there are practical limitations for implementing an 
nth order LEV system with a large number of Laguerre basis 
functions. Fig. 3 shows the variation of normalized mean 
square error (NMSE) in percent versus the number of 
Laguerre basis functions employed to estimate PSP output 
data. The top curve is a linear combination of LFs (first order 
LEV). The second one also includes the cross products (2nd 
order). The third curve which almost coincides with the 
second one includes third order products. This clearly shows 
that while including the second order nonlinear terms has an 
advantage over first order linear estimation, the third order 
nonlinear terms provide negligible improvement. Finally, the 
bottom curve shows the second order estimation when both 
slowly and rapidly decaying time constants are used 
(pfast=50s-1 and pslow=3s-1). Including two sets of LFs can 
significantly improve model performance. This result is 
expected considering the underlying biological mechanisms. 
The transformation performed by glutamatergic synapses 
from action potential to post-synaptic potentials includes fast-
acting ionotropic receptors, such as AMPA and NMDA, and 
slow-acting metabotropic receptors, such as mGluR. In this 
work we implement the second order estimation with one 
time constant (p=50s-1). The extension to two time constants 
is straightforward. 

D. Hardware Implementation of the LEV Model 
 To implement the model described above, the first step is 
to build the set of LFs using the least power and area for 
future expansion to large-scale multi-input/output spike 
systems. In this work, HLP and HAP of (1) were implemented 
using OTA-C filters. The low-pass section is shown in Fig. 4.  
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Figure 4: Low-Pass Filter Implementation 

The capacitors can be connected across the output 
differentially to save area if a common mode feedback loop is 
not required. The transfer function for the low-pass filter is 
given by:    
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Comparing this transfer function to (1b), it can be inferred 
that p=gm2/C1. For unity dc gain gm1=gm2. The identical all-
pass sections are implemented using the filter structure in 
Fig. 5. The transfer function of the all-pass filter can be 
derived as:   
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While more compact all-pass topologies exist, this particular 
configuration provides fully differential outputs as well as a 
large input impedance to minimize the loading effect on the 
preceding stage. To match this transfer function to (1b) we 
choose gm2/C1=p, gm4=-gm5 and gm1=gm2.  

E. Design Considerations for Laguerre Filters 
The p-parameter of the LFs is determined based on the 

decay time of the PSP signals, which is on the order of tens 
of milliseconds. For a given p=gm/C it is important to 
minimize C to reduce the on-chip area. Using high-density 
capacitors as well as active impedance converters can 
accomplish area reduction. Scaling down the gm cells with 
the capacitors can also shrink the size. This means a smaller 
current level for the OTAs. The lower limit for this current 
however is set by the reverse conduction current of the 
source/drain diode to the bulk and to a much smaller extent 
the leakage currents through the gate. This leakage can be 
reduced by using low-leakage processes or circuit design 
techniques that allow femto-Amp current-mode designs [7]. 

Ideal LFs have initial values that are reached immediately 
after a pulse is applied to the system. In a physiological 
system, however, there is a delay between the time an action 
potential reaches the pre-synaptic bouton and the time a post-
synaptic potential can be recorded at the soma. 

  

Figure 5: All-Pass Filter Implementation 

This is due to several mechanisms, such as the distance that 
the input signal has to travel on the Schaffer collaterals to 
reach the CA1 synapses, the neurotransmitter diffusion 
through the cleft, and the summation of synaptic currents in 
the soma. Any hardware implementation will also have a 
finite rise time which mimics this effect. The only challenge 
here is to make sure that the rise times for all Laguerre filter 
sections are matched. This is difficult to achieve since LFs 
are generated by propagating the input through multiple filter 
sections and each section has parasitic poles and zeros that 
will limit the rise and fall time. Therefore, when designing 
the transistor level implementation of Fig. 4 and 5 it is 
important to minimize the number of parasitic poles for each 
transconductance cell and properly delay the output of each 
Laguerre section so that their initial values are reached 
congruently.  

E. Transistor Level Implementation 
In this work, all circuit blocks were designed using CMOS 

transistors operating in the subthreshold region. Since the 
transconductance for a given current level is maximized in 
subthreshold it is the most power efficient region of 
operation. The circuit components were designed and 
simulated in 0.13µm Cypress Semiconductor CMOS 
technology.  

The transistor level implementation of the low-pass filter is 
shown on the left in Fig. 6. This circuit implements (3) 
without creating any parasitic poles. Since the all-pass of 
Fig.5 includes a low-pass section, the low-pass circuit on the 
left in Fig. 6 can be appended by the one on the right to yield 
HAP. This design minimizes the number of components and 
optimizes power consumption in each section. Ibias was 
chosen to be 35pA for the low-pass sections along with a 
capacitor value of 10pF to achieve the desired p value. In this 
technology, the area occupied by one metal-to-metal 10pF 
capacitor is around 3000µm2. Ibias was set to be sufficiently 
larger than the leakage levels which are in the order of a few 
pA plus some margin for fine tuning the time constant. This 
also keeps the capacitor values needed to achieve the desired 
time constants at a reasonable size. All input transistors are 
PMOS to minimize flicker noise, which is important to 
consider especially for low frequency biomimetic systems. 
Since designs in subthreshold, especially those with low 
current levels, are prone to great variability, this has to be 
mitigated with mismatch calibration techniques, which will 
require some additional area.   

 

 

 

 

 

 
Figure 6: Transistor Level Implementation of the Low-Pass and All-Pass 

Filters 

These sections are then cascaded as shown in Fig. 2 to 
achieve the first order LEV model. Each Laguerre filter 
output is properly delayed in order to align their rising edges. 
To implement the second order terms of (2), the outputs of 
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the Laguerre filters were cross-multiplied using ten Gilbert 
multipliers, each with a bias current of 100pA. In order to 
obtain the full second order LEV model, the outputs of the 
first and second order systems have to be weighted and 
added, which can be achieved using programmable weighting 
multipliers whose output currents are tied together. 
 

III. RESULTS 

The simulated impulse response of the circuit with 
matched rise times of each Laguerre filter is shown in Fig. 7. 
The input is a series of pulses of 200µs duration and 
amplitude of 800mV applied differentially, resembling ideal 
impulses. The rms error between the signals generated by the 
circuit and ideal LFs is less than 5%. The weighted sum of 
these LFs along with its cross-products provides a second 
order LEV system. Fig. 8 shows the performance of the ideal 
hardware LEV model in estimating the PSP recordings. The 
top part of the graph shows the recorded PSP data due to a 
random impulse interval. The second graph shows the LEV 
hardware response to the same random input using a second 
order LEV implementation, and as a comparison, the third 
graph shows the ideal second order LEV approximation. The 
bottom graph shows the absolute value of the difference 
between the recording and the circuit output. The normalized 
mean square error between circuit estimation and data is 
14.98%. The total power consumption is 5.3nW. It can be 
inferred that the approximation does not yet completely 
capture all the effects of synaptic temporal integration. As 
mentioned above, the system performance can be improved 
significantly by including a second set of LFs with a slow 
time constant. In a practical implementation an automatic 
calibration system should be included to eliminate the 
sensitivity to excessive offsets and mismatches. 

IV. CONCLUSION 
A second order LEV model was implemented in low 

power hardware to approximate and predict intracellular 
subthreshold potentials evoked by random interval data. The 
estimation was evaluated through comparison to real data 
using normalized mean square error. The system was 
designed in a modular way to allow for easy scaling and 
programming. The model parameters can be adjusted by 
changing the bias voltages and currents in the circuit. 

 

 
Figure 7: Impulse Response of Laguerre Filter Circuits  

 
Figure 8: Comparison between Recorded Data and the Second Order LEV 

Hardware System Estimation 

Therefore, the system can be retrained for various types of 
data and application. The compactness of the modeling 
approach in addition to the nano-Amp implementation of the 
system allows for effective scaling to large-scale neuron 
models. Improvement in error can be achieved by including 
another set of LFs with a different time constant. 
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