
  


 

Abstract—For rehabilitative devices to restore functional 
movement to paralyzed individuals, user intent must be 
determined from signals that remain under voluntary 
control. Tracking eye movements is a natural way to 
learn about an intended reach target and, when com-
bined with just a small set of electromyograms (EMGs) 
in a probabilistic mixture model, can reliably generate 
accurate trajectories even when the target information is 
uncertain. To experimentally assess the effectiveness of 
our algorithm in closed-loop control, we developed a ro-
botic system to simulate a reaching neuroprosthetic. In-
corporating target information by tracking subjects’ 
gaze greatly improved performance when the set of 
EMGs was most limited. In addition we found that online 
performance was better than predicted by the offline 
accuracy of the training data. By enhancing the trajecto-
ry model with target information the decoder relied less 
on neural control signals, reducing the burden on the 
user. 

I. INTRODUCTION 

OR people whose arms have been paralyzed by spinal 

cord injury (SCI) movement can be restored using a neu-

roprosthetic known as Functional Electrical Stimulation 

(FES), where the spinal cord is effectively by-passed and the 

peripheral nerves are stimulated electrically [1], or other 

robotic assistive devices [2]. To date, most implementations 

of full arm reaching have involved pre-programmed patterns 

of activation, controlled by switching mechanisms through 

respiration [3] or contra-lateral shoulder movement [4], re-

sulting in unnatural control of limited movement patterns. 

To allow a more flexible interface with multiple degrees of 

freedom (DOFs), one of the most challenging problems is 

the determination of user intent from the physiological sig-

nals that remain under voluntary control. At high levels of 

cervical SCI, individuals have no control over a majority of 

the arm muscles, thus inferring free reaches through residual 

movement or electromyograms (EMG) alone is not feasible. 

A number of groups in the brain-machine-interface (BMI) 

field have shown that reconstruction of reach trajectories 

from neural signals can be greatly improved when infor-
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mation about the reach target is available [5–8]. We have 

previously shown that reaching movements can be effective-

ly reconstructed when a single shoulder EMG is combined 

with target information obtained by tracking eye movements 

[9], [10]. Eye movements are a natural, unobtrusive way to 

learn about a subject’s intentions. However, the target in-

formation obtained will be uncertain; though people almost 

always look at a target before reaching to it, they may also 

gaze at other  locations. We have shown that probabilistic 

mixture models can account for this and accurately recon-

struct reaching movements even when there is high uncer-

tainty about the  target [11]. 
In many cases decoding algorithms have been tested by 

recording the neural signals as natural arm movements are 
made, and then performing offline evaluations of how well 
those movements can be reconstructed. However,  research-
ers have recently shown that offline accuracy does not nec-
essarily predict online performance [12], [13]. This is prob-
lematic as many proposed decoding algorithms have not 
been tested in closed-loop. Additionally, in a real neuropros-
thetic system there will be no natural reaches available to 
train the models.  

We have developed a robotic system to simulate a neuro-
prosthesis, thus providing a means to evaluate our approach 
to combining EMG and gaze information in closed-loop 
control. This simulation was carried out by having a robot  
move a subject’s arm throughout a reaching workspace 
based on the decoded velocity and position. We found that 
incorporating the gaze data produced dramatic improve-
ments in control with a single shoulder EMG channel. 

II. METHODS 

A. Decoding Algorithms 

We compared two decoding approaches: a simple decoder 
that used only the EMGs as inputs and another that incorpo-
rated target information. We tested the latter both with per-
fect target information and also using information found 
from tracking subjects’ eye movements.  For both algorithms 
we employed the Kalman filter (KF) framework for decod-
ing, assuming linear dynamics and Gaussian noise: 

          ̇   ̈   
             (1) 

where xt is the state vector at time t, zt     represents 
the hand position, wt is the process noise with p(w) ~ 
N(0,Q), and Q is the state covariance matrix. 

To create a directional trajectory model, we added the tar-
get position to the state space (KFT), thereby linearly incor-
porating it into the trajectory model [7], [8]: 

         ̇   ̈       
             (2) 

where zTt    is the vector of target positions. In all cases 
the observation model was considered to be linear, with 
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Gaussian noise. Observations were generated from the cor-
responding window of EMG by extracting two features from 
each channel – the RMS value and the number of zero cross-
ings (above a threshold), a frequency-related feature. The 
square root transform of these features was taken to obtain 
more Gaussian-like distributions. 
 For the case when the target estimates were based on eye 
movements, multiple potential targets needed to be consid-
ered. To achieve this we used a probabilistic mixture model 
(mKFT) over each of the potential targets [5]. The KFT 
recursion was performed for each possible target, zT, and 
a weighted sum of the outputs was taken. The weights 
were proportional to the prior for that target, and the 
likelihood of the model given that target. The weights 
were thus initialized based on the gaze data and they 
converged to the most likely trajectory as the neural in-
formation was integrated over the course of the reach. 
Further details of the algorithms can be found in [9–11]. 

B. Experimental Setup and Protocols 

Six able-bodied subjects (3 male, 3 female) participated in 
the experiments. Each subject provided informed written 
consent to a protocol approved by Northwestern Univer-
sity's Institutional Review Board. All subjects were right-
arm dominant. 

A retractable stylus was attached to the handle of a 3 DOF 
HapticMaster robot. Subjects were seated comfortably fac-
ing two touch-screen monitors that were at different distanc-
es to the subject in the Z direction (Fig. 1a). The subject held 
the robot handle which was positioned directly in front of 
them; the robot then moved their right arm forward  through 
a reach so that the stylus would touch the monitors when the 
arm was extended. The HapticMaster velocity was con-
trolled at 60Hz, with low-gain PID feedback on the position 
error to maintain positional fidelity. 

The EMG signals were anti-alias and band-pass filtered  
and recorded at 2400Hz. The monitor, HapticMaster and 
head positions were recorded at 60Hz using an Optotrak 
motion analysis system so that gaze data and positions on 
the monitors could be transformed into the HapticMaster 
workspace. We recorded eye movements with an ASL 
EYETRAC-6 head-mounted eye tracker. All signals were 
recorded simultaneously and processed at 60Hz, thus the 
EMGs were divided into 16ms windows for feature ex-
traction. 

We tested all three algorithms (KF, KFT and mKFT) with 
two sets of EMGs, in an attempt to simulate the signals that 
would be available at different levels of SCI. To simulate an 
injury below the fourth cervical level (C4) we used just the 

upper trapezius and for C5 we also included the anterior, 
middle and posterior deltoids (Fig. 1b). Each subject per-
formed three experimental sessions: one without target in-
formation where the KF was tested at both simulated injury 
levels (in separate blocks); one where the KFT and mKFT 
(perfect target information and eye-tracking) were tested at 
C5; a third where the KFT and mKFT were tested at C4. The 
orders of the algorithms and simulated injury levels were 
randomized across subjects. 

C. Training the Decoders 

Training data was required to estimate the decoder parame-
ters. Because we wanted control to be intuitive, it was im-
portant that the EMGs controlling the decoder correspond as 
closely as possible to natural reaches. However, as the target 
population would be unable to generate unassisted reaches, it 
made sense to have the robot move along an” ideal” trajecto-
ry (linear in the kinematics and target) as the subject at-
tempted to move along with the reach.   

During training, 18 targets spanning the reachable area of 
the two monitors each appeared twice in random order. The 
reach began with the HapticMaster in the original starting 
position and, after an audible go cue, subjects performed the 
reach towards the target while EMGs were recorded  (Fig. 
2). During the reach the subject was instructed to hold on 
and gently assist the movement. The reach was ended when 
stylus tip reached the touch-screen, at which time the robot 
returned to the start position.  

For both models the parameters A, Q and the observation 
model and covariance matrices were estimated from training 
data using the maximum likelihood solution. In the case of 
the KFT, the final recorded position of the stylus was ap-
pended to the state vector for training, taking the place of the 
target estimate. 

D. Real-time Decoder Evaluation 

After the models had been trained they were evaluated in 
a target acquisition task. For each trial a target randomly 
appeared, 1s before the go cue. The goal was to place the 
stylus in center of the target. Reaches were initiated when 
any EMG channel doubled relative to its level prior to the go 
cue. For the C4 level, the contralateral upper trapezius was 
also recorded to allow subjects to initiate reaches where they 
would not normally activate the ipsilateral muscle, by shrug-
ging their left shoulder. However, it was not included as a 
part of the decoder (Fig. 3). After initiation, the decoded 
velocity and position were used to control the HapticMaster. 

When testing the KF, only the EMGs were used as inputs 
to the decoder. In the case of the KFT, the state vector was 
initialized with the actual location of the target. For the 

 
Fig. 2.  Sample training reach a) kinematics and b) EMG  

 
Fig. 1  a) Experimental setup; b) EMG simulation of SCI levels. 
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mKFT, the gaze data from the one-second period prior to 
initiation was used to estimate three potential targets with 
which to initialize a corresponding mixture component (Fig. 
3b). The three-dimensional location of the eye gaze was first 
calculated by projecting its direction onto the monitors. The 
first, middle and last samples were selected, and all other 
samples were assigned to a group according to which of 
the three was closest. The means of these three groups 
were used to initialize three KFTs in the mixture model 
and their priors were assigned proportional to the number 
of samples in them. If the subject looked at multiple po-
sitions prior to reaching, this method ensured with a high 
probability that the correct target was accounted for by 
one of the filters in the mixture. 

After sufficient practice to produce a learning plateau, 
each subject performed forty test reaches for each decod-
ing model. Control performance was evaluated based on 
the position of the stylus at the end of the reach. The tar-
get acquisition rate and final distance to target were cal-
culated. In addition, the proportion of target variance 
accounted for (VAF) was calculated separately in the X 
and Y directions, by normalizing the final distance to the 
target by the total variance of the targets. As there was 
greater target variance in the Y direction, this allowed us 
to quantify the level of control in the two dimensions. As 
all of the targets were on the two monitors their positions 
were roughly similar in the Z dimension. 

Finally the online R
2
 was evaluated between the per-

formed reach and the "ideal" reach simulated between 
the start position and the target using the method for 
generating training reaches. This metric was used for 
comparison with the R

2
 of the training data, which was 

calculated using leave-one-out cross-validation to com-
pare the EMG (and final target in the case of the KFT)  
based offline reconstructions to the training reaches.   

III. RESULTS 

A. Control Performance 

Unsurprisingly, when the decoder was given perfect target 
information (KFT) the reaches were very accurate, regard-
less of the quantity of EMG available (Fig. 4). Performance 

with the eye-tracking (mKFT) was only slightly less accu-
rate and also remained consistent across the two simulated 
injury levels. For the KF, with only EMG as an input, the 
simulated level of injury naturally had a large effect. The 
target acquisition rate at C5 with all four EMGs was close to 
1, whereas at C4 it dropped to 40%. The average target error 
was roughly 5cm greater than that of the mKFT. However, 
this error was effectively determined by the distribution of 
targets in the workspace. As the upper trapezius was pri-
marily activated during movements in the positive Y direc-
tion subjects were able to accurately control this dimension, 
but were unable to move in the X direction. This is illustrat-
ed in the target VAF, which is 0 in X and close to 1 in Y 
(Fig. 4c-d). 

B. Comparison of Offline Accuracy and Performance 

   
A central question in decoding research is how online and 

offline performance correspond. We found that the online R
2
 

was consistently higher than the training R
2
 (Fig. 5). Even 

though subjects were in no way constrained to follow the 
“ideal” reach path, it was more closely replicated online than 
in reconstructing the training reaches where that path had 
been enforced. In particular, the KF at C4 produced a wide 
range of training accuracies, as the extent to which the upper 
trapezius was activated during  training varied across sub-
jects. However, all subjects were able to perform highly ac-
curate control in the Y-direction, as reflected by the consist-
ently high R

2
 values. As mentioned above, there was little 

control in the X-direction –  the high R
2
 values are due to the 

 
Fig. 4. Target accuracy for algorithms and simulated injury levels.  

Mean and standard errors of a) Target acquisition rate b) Final posi-

tion error, and Target VAF in c)  X and d) Y directions.  

 

 
Fig 5. Online R2 plotted against R2 of training data for the different 

algorithm and simulated injury level combinations for each subject. 

 
Fig. 3.  Sample testing reaches, kinematics and square-root trans-

formed RMS of EMG a) KF at C5 and b) mKFT at C4  
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majority of the reach variance being in the Y and Z-
directions.  

IV. DISCUSSION 

 For people who have sustained a high-level SCI, FES con-
trol of reaching is a challenging task. The available proximal 
muscles are not sufficient to provide effective control; the 
incorporation of additional peripheral sensors, such as eye-
trackers, is therefore an obvious solution. Adding target in-
formation into the trajectory model is an intuitive way to 
enhance control; the target informs us about the reach dy-
namics, resulting in a more well-defined trajectory. As our 
training reaches were generated from a stereotyped trajecto-
ry model as opposed to natural reaches, the uncertainty 
about the model was further minimized. This served to de-
crease the reliance on neural control signals, requiring less 
effort from the user.  
 To effectively evaluate signal sources and algorithm ap-
proaches it is essential that they be compared in closed-loop 
control. While there are many examples in the literature of 
closed-loop systems with non-human primates, usually con-
trolling a virtual interface, few of them have compared algo-
rithms explicitly. A small number of human experiments 
have compared algorithms [15], or signal sources [14] in 
closed-loop. Cunningham et al used a closed-loop BMI sim-
ulator to explicitly compare offline and online performance 
while changing the bin-width of a decoder, finding that 
online and offline evaluations produced strikingly different 
results [13]. While a larger bin-width provided smoothness 
in offline reconstructions, smaller bins are more useful 
online as they allow faster response times for subjects’ error 
corrections. We did not vary any parameter to explicitly in-
fluence offline accuracy, however we did compare how well 
the “ideal” trajectory was replicated both on- and offline. 

While in this study both offline and online accuracy  with 
target information were very high, we found that KF per-
formance without target information, when the subjects 
could interact with the decoder, was dramatically better than 
the offline accuracy predicted. This means that the im-
provements found by incorporating target information are 
less than indicated from previous offline studies [9], [10]. 
However, in the most severe cases, simulated here in the C4 
level, the target information was necessary to produce func-
tional movements in all directions. Furthermore, while accu-
rate reaches were performed in the C5 case using only EMG, 
it often required more effort from the user. Qualitatively, 
subjects reported that the decoders incorporating target in-
formation were much easier to control than those without; 
the model with perfect target information often seemed ef-
fortless. This is somewhat illustrated by the fact that the 
online R

2
 is lower for the C5 KF versus mKFT (Fig. 5). 

While the KF reaches were almost as accurate at the target  
(Fig. 4), the trajectories produced were less consistent.  

Gaze information is extremely useful when predicting de-
sired trajectories, and we have shown here that it is effective 
and practical for use in a real-time system. Target infor-
mation could equally be obtained by other means such as 
intracortical recordings or scanning the workspace. Even a 
small quantity of neural information can compensate for 
uncertainty in the target information; a single EMG com-
bined with the gaze here enabled accurate  control. Further-

more, even when there was sufficient neural data for effec-
tive control the target information helped generate more 
“ideal” trajectories, relying less on the users’ neural control 
and thereby reducing their cognitive burden. 

ACKNOWLEDGMENT 

The authors thank Tim Haswell and Ben Walker for their 
work developing the data acquisition and robot control sys-
tems, and Dr Nicholas Sachs for experimental assistance. 

REFERENCES 

[1]  D. T. Yu, R. F. Kirsch, A. M. Bryden, W. D. Memberg, and A. M. 
Acosta, “A neuroprosthesis for high tetraplegia,” J Spinal Cord 

Med, vol. 24, no. 2, pp. 109–113, 2001. 

[2]  L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. 
Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, 

and J. P. Donoghue, “Reach and grasp by people with tetraplegia 

using a neurally controlled robotic arm,” Nature, vol. 485, no. 7398, 
pp. 372–375, May 2012. 

[3]  B. T. Smith, M. J. Mulcahey, and R. R. Betz, “Development of an 

upper extremity FES system for individuals withC4 tetraplegia,” 
IEEE Transactions on Rehabilitation Engineering, vol. 4, no. 4, pp. 

264–270, 1996. 

[4]  N. Hoshimiya, A. Naito, M. Yajima, and Y. Handa, “A multichan-
nel FES system for the restoration of motor functions in high spinal 

cord injury patients: a respiration-controlled system for multijoint 

upper extremity,” IEEE Transactions on Biomedical Engineering, 
vol. 36, no. 7, pp. 754–760, 1989. 

[5]  B. M. Yu, C. Kemere, G. Santhanam, A. Afshar, S. I. Ryu, T. H. 

Meng, M. Sahani, and K. V. Shenoy, “Mixture of trajectory models 
for neural decoding of goal-directed movements,” Journal of neu-

rophysiology, vol. 97, no. 5, p. 3763, 2007. 

[6]  L. Srinivasan, U. T. Eden, A. S. Willsky, and E. N. Brown, “A 
state-space analysis for reconstruction of goal-directed movements 

using neural signals,” Neural computation, vol. 18, no. 10, pp. 

2465–2494, 2006. 
[7]  C. Kemere and T. Meng, “Optimal estimation of feed-forward-

controlled linear systems,” in IEEE International Conference on 

Acoustics, Speech, and Signal Processing, 2005. Proceed-
ings.(ICASSP’05), 2005, vol. 5. 

[8]  G. H. Mulliken, S. Musallam, and R. A. Andersen, “Decoding 

trajectories from posterior parietal cortex ensembles,” Journal of 
Neuroscience, vol. 28, no. 48, p. 12913, 2008. 

[9]  E. A. Corbett, E. J. Perreault, and K. P. Kording, “Decoding with 

limited neural data: a mixture of time-warped trajectory models for 
directional reaches.,” Journal of Neural Engineering, forthcoming. 

[10]  Corbett, E.A., Perreault, E.J., and Kording, K.P., “Mixture of time-

warped trajectory models for movement decoding,” in Advances in 
Neural Information Processing Systems, 2010, vol. 23. 

[11]  E. A. Corbett, N. A. Sachs, K. Kording, and E. J. Perreault, “Deal-

ing with noisy gaze information for a target-dependent neural de-
coder,” in Engineering in Medicine and Biology Society, EMBC, 

2011 Annual International Conference of the IEEE, 2011, pp. 5428–

5431. 
[12]  S. M. Chase, A. B. Schwartz, and R. E. Kass, “Bias, optimal linear 

estimation, and the differences between open-loop simulation and 

closed-loop performance of spiking-based brain-computer interface 

algorithms,” Neural Networks, vol. 22, no. 9, pp. 1203–1213, 2009. 

[13]  J. P. Cunningham, P. Nuyujukian, V. Gilja, C. A. Chestek, S. I. 

Ryu, and K. V. Shenoy, “A closed-loop human simulator for inves-
tigating the role of feedback control in brain-machine interfaces,” 

Journal of Neurophysiology, vol. 105, no. 4, pp. 1932–1949, 2011. 
[14]  E. A. Corbett, E. J. Perreault, and T. A. Kuiken, “Comparison of 

electromyography and force as interfaces for prosthetic control,” J 

Rehabil Res Dev, vol. 48, no. 6, pp. 629–42, 2011. 
[15]  S.-P. Kim, J. D. Simeral, L. R. Hochberg, J. P. Donoghue, and M. 

J. Black, “Neural control of computer cursor velocity by decoding 

motor cortical spiking activity in humans with tetraplegia,” J. Neu-
ral Eng., vol. 5, no. 4, pp. 455–476, Dec. 2008. 

742


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

