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Abstract— Cardiopulmonary diseases affect millions of peo-
ple and cause high costs in health care systems worldwide.
Patients should perform regular endurance exercises to stabilize
their health state and prevent further impairment. However,
patients are often uncertain about the level of intensity they
should exercise in their current condition.

The cost of continuous monitoring for these training sessions
in clinics is high and additionally requires the patient to travel
to a clinic for each single session. Performing the rehabilitation
training at home can raise compliance and reduce costs.

To ensure safe telerehabilitation training and to enable
patients to control their performance and health state, detection
of abnormal events during training is a critical prerequisite.
Therefore, we created a model that predicts the heart rate of
cardiopulmonary patients and that can be used to detect and
avoid abnormal health states.

To enable external feedback and an immediate reaction
in case of a critical situation, the patient should have the
possibility to configure the system to communicate warnings
and emergency events to clinical and non-clinical actors. To
fulfill this task, we coupled a personal health record (PHR)
with a new component that extends the classic home emergency
systems. The PHR is also used for a training schedule definition
that makes use of the predictive HR model.

We used statistical methods to evaluate the prediction model
and found that our prediction error of 3.2 heart beats per
minute is precise enough to enable a detection of critical states.
The concept for the communication of alerts was evaluated
through focus group interviews with domain experts who
judged that it fulfills the needs of potential users.

I. INTRODUCTION

Cardiovascular and pulmonary diseases are the major
causes of death worldwide. The Word Health Organization
estimated that the only the Chronic Obstructive Pulmonary
Disease (COPD), which is a pulmonary disease that is often
associated with other cardiovascular diseases, affects 210
million people worldwide [1]. The indirect costs for the
treatment were estimated at 49.5 billion Dollars, only in the
USA [2].
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COPD causes an inflammation of the lung tissue that
slowly reduces the patient’s ability to breath. As a conse-
quence affected patients reduce their physical activity, which
causes a degeneration of the muscle mass and worsens the
symptoms. This cyclic reinforcement of symptoms has a
severe negative impact on the patient’s health state.

Studies show that pulmonary rehabilitation training im-
proves physical capacity, reduces breathlessness, reduces the
number of hospitalizations and increases the quality of life
[3]. Typically, training takes place when the patient has
recovered after having had an incident that led to hospitaliza-
tion. The rehabilitation training is monitored by physicians,
who design individualized training schedules and adapt the
training load manually when it is considered too high or too
low for the patient.

After the patient has been discharged, the training should
be continued at home, but COPD-patients live with the
constant fear of getting a respiratory crisis and are thus
unsure how much training load they can undergo. As a
consequence they often train at a suboptimal level that is
too low in intensity.

Telerehabilitation systems like the OSAMI-System [4]
trying to close the gap by providing a telesupervised training
that is remotely monitored. Vital signs are recorded and
streamed to a computer where they can be evaluated by
physicians. A drawback of this approach is that a physician
has to be present for the whole time period of the training
session and an internet connection must be available. This
weakness is compensated by offline training modes using
autonomous training control algorithms (e.g. [5]).

Heart rate (HR) is an important vital parameter and
thereby an important indicator of a patient’s physical state
[5]. Different variables influence the patients HR during
training. Considering these factors can be of major use for
physicians and automated systems when deciding how much
load a patient can undergo during a training session. The
information could also be used to support the creation and
optimization of training schedules and during the current
training session itself to derive the future development of
the patient’s health state [6]. Deviances from the predicted
trend during a normal training session may also give a hint on
potentially abnormal development and hence allow detection
of critical states before they occur. This may also lower the
patient’s fear of getting in an unstable health state.

After a potential negative trend was detected the patient
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and/or external users have to be informed. Classic home
emergency systems, which are often used by elderly people,
are not suitable for the communication of events, which were
generated by autonomous systems. Typically, classic alert
communication systems have two different states: “alarm”
and “not-alarm”. These two states are not adequate to differ-
entiate between warnings and critical situations. Also, they
cannot include any supplementary information like the rea-
son that lead to an emergency. False alerts cannot be avoided
when relying on autonomous systems. Hence, such systems
should only contact an official emergency department when a
situation is detected that requires immediate action. In most
cases it is more appropriate to involve a notification of other
people as neighbors or nearby living relatives. Only if none
of these actors responds, the responsible emergency depart-
ment should be involved. Classic emergency communication
systems are not flexible enough to reflect such an emergency
chain, which depends on the detected situation.

The aim of our research is to improve the patient’s safety
during rehabilitation training. The alert detection that works
on the basis of our prediction model is not in the focus of
this paper, but we planning to use an extended version of
a former published system that uses expert knowledge to
control the training intensity and to raise alarms [5].

We created and integrated a model that predicts the
patients HR in training situations on basis of a given training
schedule, demographic information about the patient and
weather data. This information is stored in a Personal Health
Record (PHR) and can be shared with physicians by the
empowered patient. Training results can thus be evaluated
and a continuous and time-independent adoption of the
training schedule is possible. If an alarm is detected during
training, the system manages the communication of warnings
and alerts to the patient, relatives, and professionals who are
participating in the treatment.

II. RELATED WORK

Achten and Jeukendrup identified age, gender, environ-
mental temperature, hydration, altitude and anti hypertensive
medication such as beta blockers [7] as important influence
factors for the training HR [8]. For an effective and safe
training it is not only important to know the optimal and
maximum HR at which a patient should train, but also how
HR will develop over time to predict and prevent critical
states and to plan an optimal training schedule taking into
account as many of the influencing variables as possible. For
this purpose several models have been developed. Velikic et
al. compared Kalman filters to linear and non-linear models
for the prediction of HR of patients with congestive heart
failure (see [9]). They used a pedometer to measure the
subject’s activity and found that linear models delivered
the best results for a short term prediction. Their work
also shows that physical activity in everyday life has an
influence on HR. Other approaches modeled the HR response
to provide a better training control [10], [11], [12]. Neither
have these models been checked for their applicability on

cardiopulmonary patients nor do specialized HR models exist
for these patients.

Most commercially available emergency systems! are
based on similar functional principles. The user can operate
a mechanical button, which activates the alarm and uses the
land line telephone of the user to dial a predefined number,
which belongs to a service center and/or caregiver. After
the call was accepted by a service employee the verification
of the alarms takes place by direct communication with the
patient through a connected microphone and speaker. Other
systems use an opt-out approach, where the user has to
press a button inside a predefined time schedule to avoid
an automated raise of the alarm.

We conducted a survey of 48 existing third-party PHRs
in [13]. Some of these products enable the user to enter
emergency contacts, but none of them combines this func-
tionality with a communication system for alerts that uses
other channels such as email.

III. METHODS
A. Heart Rate Model Creation

Our Data were recorded during the outpatient rehabili-
tation from cardiopulmonary patients with NYHA 1-2 and
COPD level 2-3 (see [14]). The datasets were collected
during training sessions performed from July to September
2009 in the exercise training center of the Medical School
Hannover and include the following information:

« Patient demographics: age, sex

o Training data: date and time, duration, load

« Vital signs data: resting HR before training, recovery
HR after training, blood pressure (BP) (rest, load, re-
covery with systolic and diastolic values), Borg value
[15], HR during the whole training derived from Elec-
trocardiogram (ECG) data

Because weather can influence the training, we also included
data from the German weather service, which were recorded
by a weather station in Hannover (station ID: 2014) and
included temperature, air pressure, and humidity.

After filtering of implausible data, we had 668 (325 F, 343
M) training sessions left from 115 patients (in mean 5.8 +
4.5 trainings per patient). We built the model using a stepwise
regression analysis [16]. This statistical method performs a
multivariate regression to determine a (local optimal) model
that includes all relevant predictors from a given set of
variables. We used this method to create a submodel for each
training phase (warm up plateau, warm up ramp, training
and cool down) to reflect the different physiological targets.
These four submodels were then concatenated to a complete
model for one training session (see fig. 1).

To determine the quality of the overall model we per-
formed a 2-fold cross-validation. We divided the dataset
into two parts dy and d;. Both parts were of the same size
and contained randomly selected training sessions (n = 334)
from the dataset. First, we used dj to train the model and
validated it against the d; dataset then we performed this

'E.g. http://www.rescuealert.com/
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Fig. 1: Training session with curves for the measured HR
and HR that was predicted by the four linear models.

procedure vice versa. The error was quantified by root mean
square error (RMSE) which represents the deviation between
measured and predicted HR over a whole training.

B. Alert Communication System

The alert communication system distinguishes between
two levels of alert: Warnings and emergencies. Warnings de-
pict in situations where an event was detected that potentially
affects the patient’s health state in a negative way. Hints
for an upcoming medical problem might include a contin-
uous decrease of performance during a single rehabilitation
training or a continuous increase of the average HR during
a series of training sessions. Emergencies depict situations
where immediate medical attention could be necessary. For
example if the patient suffers a heart attack or a breathing
crisis during training.

To contact different actors, related to the cardiopulmonary
patient, the alert communication system extends the concept
of classic emergency chains. The system attempts to establish
a connection with one or more participants, who need to
acknowledge the receipt of a message. To provide a reliable
communication that fulfills the needs of this heterogeneous
group of actors, it combines different physical communica-
tion channels with different communication media.

Beside the preferably low acquisition costs, the potential
criticality requires a very high availability. To meet these
challenges our system combines different widely available
communication channels. The first prototype was developed
for the usage in Germany and uses the standard ISDN
(Integrated Service Digital Network?), which is mainly used
in Germany, UK, Austria and Canada. The system can also
use the standard GSM / UMTS mobile network (see [17]).
The hardware as well as the functionality for accessing and

2http://www.itu.int/rec/T-REC-I/e
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Fig. 2: Behavior of the alert communication system to
process escalation chains in UML action diagram notation.

switching between these networks is integrated in many
current internet routers.

Both communication channels permit to transmit data to
the internet as well as speech to other landline or mo-
bile phones. The system currently supports transmission of
speech via ISDN or GMS standard. Short Message Service
(SMS) data can be transferred via internet and telefax data
via ISDN. The connection details of possible communication
participants can be defined by the patient himself in his
PHR and are stored in an XML-data format (see fig. 4).
The system receives the alert priority that is defined through
the predictive model and an (yet unimplemented) error
detection component and chooses the list of contacts either
for warnings or emergencies (see fig. 2) accordingly.

If the message to be delivered is an emergency, the system
uses telefax, SMS and speech as communication media in
parallel to inform either one or more persons. The system
assigns a priority to each person and starts with the person(s)
with the highest assigned priority. After the message was sent
the system waits a predefined time (default 10 minutes) for
an acknowledgement.

This manual acknowledgement is necessary for two rea-
sons: firstly, to detect that the message could not be delivered
e.g. because an answering machine or a different person
accepted the call, the storage space for SMS on a mobile
phone is full, the telefax has a paper jam or a mail was
falsely recognized as spam. Secondly, it could be important
for legal reasons to know, which of the contacted persons
provided the acknowledgement.

The acknowledgement can be provided either directly
while the incoming call is received by entering a unique
id (which was previously assigned to the communication
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Fig. 3: Components of the model based emergency detection
system.

participant) with the push-buttons of the receiving phone.
If the person missed the call the id can also be provided
through a call back to the phone of the patient, where an
announcement is played that requests the id.

The ISDN standard provides two speech channels that
can be used simultaneously. The system uses one channel
to perform an outgoing call and the other channel to process
incoming acknowledgments. When no acknowledgement is
received after a predefined time, the system tries to contact
the person(s) on the list with the next lower priority. In
case that the message is a warning the system uses email
and telefax as asynchronous communication channels and a
longer waiting period for the acknowledgement (default 24
hours). Emails can also be acknowledged by selection of a
link provided in the email.

The system is built on open source components. Incoming
and outgoing calls are handled by vBox3? as well as the
Dual-Tone Multi Frequency Signaling (DTMF) detection. A
Jetty webserver* handles the email acknowledgments and
forwards them to our software. A Fritz! Card (AVM, Berlin,
Germany) has been used to provide communication channels
and the Common ISDN Application Programming Interface
(CAP]) provides support for sending fax messages from
within the Linux operating system on which the system runs.

We used a qualitative approach for the evaluation of the
alert communication component by conducting a focus group
interview with three experts in the field. Two of them are
employees of the Johanniter-Unfall-Hilfe e.V.> a non-profit
organization operating 210 emergency centrals in Germany.
One of the experts is the manager of an emergency central,
the other one is the technical manager. The third expert has
much experience in the sector of home care. The system was
introduced to the experts and then discussed under technical
and organizational aspects.

C. Technical Integration with the PHR

To substantiate the usefulness of our model we integrated
it into a technical prototype for a PHR system, localized in

3http://www.malte-wetz.de/index.php?viewPage=
vbox.html
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Fig. 4: Screenshots of the PHR: a) Contact details for the
alert system, b) Training schedule creation supported by the
model for the prediction of the patient’s heart rate.

the user’s home environment (see fig. 3). An empowered user
can enter and manage his own medical data and hence take
an active role in the treatment process. The system stores
and delivers health-related data for the telerehabilitation
training and also provides standardized communication with
professional IT-systems utilizing the IHE integration profiles
Exchange of Personal Health Record Content (XPHR) [18]
and Cross-enterprise Document Media Interchange (XDM
[19]).

Platform components running inside an OSGi framework
(see [20]). Beside component based development, the frame-
work also provides standardized services including contin-
uous remote updates of services during runtime by means
of the initial provisioning specification. The model for the
prediction of HR is expressed as a set of coefficients for
each training phase in form of XML-files. The PHR uses
these model data together with values, which were entered
by the patient (e.g. age) and physicians (e.g. training load)
to complete the linear combinations predicting HR during a
training session.

IV. RESULTS

We started the integration of the HR prediction model with
the training plan creation. Fig. 4 shows the creation of a
training plan with usage of the model and the mask for the
definition of contact details, which can be used by the system
for alert communication. The blue line indicates the predicted
HR for the patient. Values are changing on the fly, when the
physician changes the load value or the training duration,
or when the patient changes data relevant for the prediction
in the PHR. The cross validation showed that our model is
able to predict HR of cardiopulmonary patients during the
training with a median error of 3.2 heart beats per minute.

We discussed with the experts in the focus group interview,

705



which persons should be informed by the alert communi-
cation system. They pointed out that this is a non-trivial
task, because different factors like daytime and the type
of emergency influencing the decision, which persons or
institutions should be alerted. In every situation informing
an emergency central would be of importance even although
it is sometimes hard for the operators to decide if an
incoming emergency demands an immediate reaction or not.
Criteria are hard to define, because they are depending on the
individual estimation of a patient’s health state. The experts
appreciate the inclusion of health information (e.g. the latest
ECG data) in transmitted alert messages and stated that this
would improve the estimation of a situations priority.

The experts also discussed the error-proneness of the com-
munication channels intensively. They pointed out that most
of the current available solutions using one communication
channel (the landline). They judged the proposed concept of
combining different communication channels as very robust.

V. DISCUSSION AND CONCLUSION

Our current HR model can still be improved in several
aspects. First of all the predictors were limited to the data
available for the study. Due to this limitation, e. g. medication
could not be taken into account. Several other predictors will
be examined and integrated as soon as further data becomes
available. We hope to increase the precision of our model in
this environment, as more predictors like e. g. blood pressure
during the training are available.

Beside these improvements we think that the prediction
during the training plan creation is already precise enough
to give patients and physicians an impression about the
normal development of HR and support them to define an
appropriate training plan. The median error of 3.2 beats per
minute is precise enough to work as a reliable reference for
a system that detects critical health states during the training.

The concept of the alert communication component con-
vinced experts and was rated as a suitable way to perform
this task in a domestic environment. Mainly, the experts
saw three main advantages compared with classical home
emergency communication systems: firstly, the improvement
of the robustness through the usage of multiple commu-
nication channels, secondly the compatibility with future
alert detection systems and thirdly the inclusion of further
information that allows human operators to make better
decisions.

In our future work, we will integrate the PHR with its
HR prediction model and the alert communication system
with the OSAMI tele-rehabilitation system. The components
will be used for training schedule planning and supervision
of patients by using the alert detection and communication
during training sessions.
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