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Abstract— One objective of mechanical ventilation is the 
recovery of spontaneous breathing as soon as possible. 
Remove the mechanical ventilation is sometimes more 
difficult that maintain it. This paper proposes the study of 
respiratory flow signal of patients on weaning trials process 
by autoregressive moving average model (ARMA), through 
the location of poles and zeros of the model. A total of 151 
patients under extubation process (T-tube test) were 
analyzed: 91 patients with successful weaning (GS), 39 
patients that failed to maintain spontaneous breathing and 
were reconnected (GF), and 21 patients extubated after the 
test but before 48 hours were reintubated (GR). The 
optimal model was obtained with order 8, and statistical 
significant differences were obtained considering the values 
of angles of the first four poles and the first zero. The best 
classification was obtained between GF and GR, with an 
accuracy of 75.3% on the mean value of the angle of the 
first pole.  
 

I. INTRODUCTION 

Mechanical ventilation provides support to patients 
with respiratory failure. Liberation from mechanical 
ventilation is a common clinical practice, and there are 
different protocols for removal of ventilator support. The 
need for accurate prediction applies to all phases of 
weaning, beginning with reductions in mechanical 
support, as patients are increasingly able to support their 
own breathing, followed by trials of unassisted breathing, 
which often precede extubation, and ending with this [1]. 
Withdrawal of mechanical ventilation should be 
performed as soon as autonomous respiration can be 
sustained. Both unnecessary delay and premature 
weaning may have adverse effects on patients’ outcome, 
prolonging mechanical ventilation and duration of 
intensive care unit stay [2]. Weaning process represents a 
period of transition from mechanical ventilation to 
spontaneous breathing, and is associated with a change in 
autonomic activity [3]-[5]. When mechanical ventilation 
is discontinued, up to 25% of patients have respiratory 
distress severe enough to require reinstitution of 
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ventilator support [6]. Several weaning indices have been 
studied for estimation of weaning readiness. The 
variability of breath duration is non-random and may be 
explained by a central neural mechanism or by instability 
in the chemical feedback loops [7]. Different studies have 
been performed in order to detect which physiological 
variables identify readiness to undertake a weaning trial 
[8]-[10]. In our previous work we characterized the 
respiratory pattern of patients in weaning process through 
variability of respiratory time series [11], [12].  

The spectral analysis is a tool widely used to assess 
many types of biomedical signals. Several studies have 
been given for the estimation of AutoRegressive (AR) 
and Moving Average (MA) models. Processes with 
spectral poles or narrow peaks are preferably described 
with AR models. The MA models are suitable to describe 
processes with spectral zeros or narrow valleys with only 
a few parameters. The AR models would require many 
more parameters to approximate a spectrum with deep 
valleys. Finally, the combined ARMA models may be the 
optimal type for processes with a combination of spectral 
poles and zeros. Durbin has used long AR models in MA 
estimation, and this method can produce accurate 
estimates if the order of that AR model is correctly 
chosen [13]. The MA method of Durbin is based on the 
theoretical and asymptotical equivalence of AR (∞) and 
MA (q) processes. In practice, estimates of the finite-
order AR models have to be used. A common choice has 
been to use the parameters of the best predicting AR 
model order, or an AR model order that depends on the 
number of MA parameters that is estimated [14], [15].  

The quality of selected model depends on the sample 
size used for estimation, on the number of observations, 
on the estimation algorithm, and on the order selection 
criterion. Several autoregressive estimation algorithms 
have been developed [16]. The asymptotical theory is 
more or less the same for all these different estimation 
algorithms. Many criteria exist for order selection like the 
final prediction error (FPE), asymptotic information 
criteria (AIC), autoregressive transfer function criterion 
(CAT), and different variants of these have been reported 
and studied. The penalty for estimating more parameters 
becomes a function of the sample size in the consistent 
method. Many asymptotical order selection criteria can 
be written as a single generalized information criterion 
(GIC) with different values for the penalty factor [16], 
[17]. A test for any model selection and estimation 
procedure is to apply it to the selection of a model class, 
and then analyse the result under the presumption that the 
data are generated by a model in one of the classes [18]. 
We propose the study of the respiratory flow signal using 
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ARMA model with GIC criteria, for the classification of 
the different groups of patients on weaning trials process, 
through the poles and zeros of their models.  

II. METHODOLOGY 

A. Dataset 
Respiratory flow signals were measured in 151 

patients on weaning trials from mechanical ventilation 
(WEANDB database). These patients were recorded in 
the Departments of Intensive Care Medicine at Santa 
Creu i Sant Pau Hospital, Barcelona, Spain, and Getafe 
Hospital, Getafe, Spain, according to the protocols 
approved by the local ethic committees. 

The patients were included in this study according to 
standard indices that initially determine the spontaneous 
breathing test: resolution of the etiology of respiratory 
failure (with inspired oxygen fraction [FiO2] ≤ 0.4, 
oxygen saturation [SO2] ≥ 90% and the need for positive 
end-expiratory pressure [PEEP ≤ 5 cm to H2O]), 
hemodynamic stability (absence of myocardium ischemia 
and/or heart failure, cardiac frequency ≤ 140 bpm, and 
stable arterial tension with tolerance of a reduction in 
inotropic support), and adequate respiratory muscle 
function (acceptable respiratory rate). 

Using clinical criteria based on the T-tube test, the 
patients were disconnected from the ventilator and 
maintained spontaneous breathing through an 
endotraqueal tube during 30 min. The records were 
obtained few minutes after disconnection. If the patients 
maintained the spontaneous breathing with normality 
they were extubated, if not, they were reconnected. When 
the patients still maintained the spontaneous breathing 
after 48 h, the weaning trial process was considered 
successful, if not, the patients were reintubated. The 
patients were classified into three groups: group GS, 91 
patients (60 male, 31 female, aged 65±17 years) with 
successful weaning; group GF, 39 patients (24 male, 15 
female, aged 67±15 years) that failed to maintain 
spontaneous breathing; and group GR, 21 patients (11 
male, 10 female, aged 68±14 years) who had successful 
weaning trials, but required reintubation in less than 48 h. 

Respiratory flow signal was acquired using a 
pneumo-tachograph (Datex-Ohmeda monitor with a 
Variable- Reluctance Transducer) connected to an 
endotracheal tube. The signals were recorded at 250 Hz 
sampling rate, during 30 min. The signals were 
resampled to 25 Hz.  

B. Autoregressive moving-average model (ARMA)  
These models are more accurate than autoregressive 

models (AR) and can give better description of the 
dynamic characteristics of the system. ARMA (p,q) 
process xn can be written as [14]  
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where  εn is a random white noise process with zero mean 
and variance σε 2 ; p corresponding to autoregressive terms 
and q moving-average terms.  

This ARMA (p, q) process becomes AR for q = 0 and 
MA for p = 0.  

C. Poles and zeros of the model 
The roots of the AR and MA polynomials A(z) and 

B(z) are denoted, respectively, by the poles and zeros of 
the ARMA(p, q) process as [14] 
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Here, z is known as the shift operator. The processes 
are called stationary if all the poles are strictly within the 
unit circle, and they are invertible if all the zeros are 
within the unit circle. The poles of the model represent 
the higher peaks of the magnitude, in one specific 
frequency. The zeros of the model show the attenuation 
of the signal in determined frequency. 

D. Power spectral density  
The parametric power spectrum h(�)  of ARMA(p, q) 

model is computed for  - π < � ≤ π with [14] 
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The model is estimated with Yule-Walker method. 
The model order is selected with generalized information 
criterion (GIC) for the penalty factor α as [14]  

N
ppGIC �� 	 �

�� 2ln),(   ,                                       (4) 

where N is the sample size.  

To select a model order, GIC(p, α) is determined for 
all orders p = q between 0 and some maximum order L. 
The order with minimum value of the criterion is 
selected. The penalty factor �  = 3 was selected [16].  

D. Statistical analysis 

Statistical analysis was performed using SPSS 
program. Data are expressed as mean ± SD. Differences 
in mean values were tested by Kruskal-Wallys and U-
Mann-Whitney test, for three and two groups, 
respectively. Classification between different groups was 
performed using a discriminant lineal analysis with leave-
one-out cross-validation. p < 0.05 was considered 
significant. 

 

III. RESULTS 

A model order 8 showed an optimal representation of the 
poles and zeros that characterize respiratory flow signal. 
Figure 1 illustrates the position of the poles and zeros of 
the respiratory flow signals for each group of patients: 
GS, GF and GR. The results show four poles and one 
zero as the most discriminant in each group of patients.  
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Table I shows mean and standard deviation of the angles 
and radios of those poles and zeros for each group of 
patients.      
 

(a) 

 
                                                     
                                                     (b) 

   
                                                                                                         

(c) 
 

 
                                                                                                        

Figure 1.  Poles and zeros of the ARMA model, order 8, applied 
to respiratory flow signal in (a) group GS, (b) group GF, and (c) 
group GR. 

 
 

TABLE I. MEAN ± STANDARD DEVIATION OF THE ANGLES AND 
RADIOS FOR EACH GROUP OF PATIENTS OF THE MOST RELEVANT 

POLES AND ZEROS 
 
 

    GS GF GR 

Po
le

 

Angle - 1 (rad) 0.27±0.02 0.31±0.03 0.26±0.02 

Angle - 2 (rad) 0.61±0.06 0.67±0.06 0.60±0.07 

Angle - 3 (rad) 1.03±0.08 1.08±0.09 1.02±0.08 

Angle - 4 (rad) 1.60±0.10 1.67±0.11 1.60±0.11 

Zero Angle - 1 (rad) 0.88±0.20 0.87±0.20 0.88±0.19 

Po
le

 

Radio - 1 0.96±0.03 0.95±0.04 0.96±0.04 

Radio - 2 0.90±0.05 0.91±0.05 0.89±0.06 

Radio - 3 0.89±0.05 0.89±0.05 0.89±0.06 

Radio - 4 0.78±0.05 0.78±0.06 0.77±0.06 

Zero Radio - 1 0.77±0.09 0.78±0.09 0.77±0.09 
 

Tables II and III show the angles and radios that 
presented statistically significant differences. 
Comparisons were made considering the three groups at a 

time, comparing the combination of two groups and 
comparing each group with the remaining patients. 

 From the ARMA model parameters, the PSD was 
obtained for each patient. Figure 2 presents the average 
PSD of each group of patients. The peaks correspond 
with the position each one of the four poles.   

 

 
TABLE II. STATISTICALLY SIGNIFICANT DIFFERENCES 

BETWEEN THE MEAN VALUES OF ANGLES 
 

  Pole Zero 

    Angle 1 Angle 2 Angle 3 Angle 4 Angle 1 

p 
- v

al
ue

 

GS 
<0.0005 <0.0005 <0.0005 <0.0005 n.s. GF 

GR 

GS vs GF <0.0005 <0.0005 <0.0005 <0.0005 n.s. 

GF vs GR 0.002 0.008 0.011 0.025 n.s. 
GS vs GR n.s. n.s. n.s. n.s. n.s. 
GS vs All 0.001 0.002 0.002 <0.0005 n.s. 
GF vs All <0.0005 <0.0005 <0.0005 <0.0005 n.s. 
GR vs All n.s. n.s. n.s. n.s. n.s. 

 
 

TABLE III. STATISTICALLY SIGNIFICANT DIFFERENCES 
BETWEEN THE MEAN VALUES OF RADIOS 

 
  Pole Zero 

    Radio 1 Radio 2 Radio 3 Radio 4 Radio 1 

p 
- v

al
ue

 

GS n.s. 
0.024 

n.s. n.s. 
n.s. 
n.s. 

n.s. 
n.s. 
n.s. 

GF 
GR 

GS vs GF n.s. 0.010 n.s. n.s. n.s. 
GF vs GR n.s. n.s. n.s. n.s. n.s. 
GS vs GR n.s. n.s. n.s. n.s. n.s. 
GS vs All n.s. 0.046 n.s. n.s. n.s. 

GF vs All n.s. 0.007 n.s. n.s. n.s. 
GR vs All n.s. n.s. n.s. n.s. n.s. 

 
 
 

The frequency with the maximum PSD (fmax) was 
obtained for each group. Table IV shows that fmax of 
group GF is higher than that of group GS and group GR. 
Table V shows the p-values when comparing the 
different groups of patients (GS, GF and GR), through 
the dominant frequency of PSD. The results indicate that 
there are significant differences between all these 
comparisons, except between group GS and group GR. 
 
 
 
 
 
 

 
Figure 2.  Mean of power spectral density of the respiratory flow 
signal for group GS, group GF, and group GR. 
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TABLE IV.  

MEAN ± STANDARD DEVIATION  OF THE MAXIMUM PEAK FOR 
EACH GROUP OF PATIENTS 

  f max (Hz) 
GS 0.440 ± 0.035 
GF 0.537 ± 0.053 
GR 0.424 ± 0.036 

 
 

TABLE V 
STATISTICALLY SIGNIFICANT DIFFERENCES OF THE PREDOMINANT 

FREQUENCY WHEN COMPARING THE DIFFERENT GROUPS OF 
PATIENTS 

  p - valor 
GS 

<0.0005 GF 
GR 

GS vs. GF <0.0005 
GF vs. GR 0.001 
GS vs. GR n.s. 

GS vs. (GF + GR) <0.0005 
GF vs. (GS + GR) <0.0005 
GR vs. (GS + GF) 0.048 

 

 

The most significant parameters obtained from the 
ARMA model, are related to poles and are: the angles 1, 
2, 3 and 4, and the radio 2. The best classification 
(discriminant linear analysis) with all these relevant 
parameters was of 69.5% when comparing groups GS 
and GF, and 69.7% for groups GF and GR.   

 
When compared the groups considering only the 

most relevant parameter, the angle of the first pole, we 
obtained that 68.4% of patients were correctly classified 
when comparing groups GS and GF, and a 75.3% of 
patients when comparing groups GF and GR.   

 

IV. CONCLUSION 
The results suggest that the group GS and the group 

GF can be classified with the poles and the zeros of the 
ARMA model, and with the frequency that characterize 
the spectrum of the respiratory flow signal.  

An interesting result is obtained when comparing the 
groups GF and GR, with an accuracy of 75.3%. In the 
clinical research there are not clear indices for the 
classification of the reintubated patients.   

As a first study, these results allow considering the 
roots in ARMA model as a promising tool to 
characterize the respiratory flow signals of these 
different groups of patients. A further evaluation of the 
methods performance should be done validating it by a 
higher number of patients, and including other clinical 
parameters.   
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