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Abstract— The effects of blink correction on auditory event-
related potential (ERP) waveforms is assessed. Two blink
correction strategies are compared. ICA-SSP combines inde-
pendent component analysis (ICA) with signal space projec-
tion (SSP) and ICA-EMD uses empirical mode decomposition
(EMD) to improve the performance of the standard ICA
method. Five voluntary subjects performed an auditory oddball
task. The resulting ERPs are used to compare the two blink
correction methods to each other and against blink rejection.
The results suggest that both methods qualitatively preserve the
ERP waveform but that they underestimate some of the peak
amplitudes. ICA-EMD performs slightly better than ICA-SSP.
In conclusion, the use of blink correction is justified, especially
if blink rejection leads to severe data loss.

I. INTRODUCTION

Electro-oculographic (EOG) activity, mainly blinks and
saccadic eye movements, constitute a major source of arte-
facts in electroencephalographic (EEG) recordings. All fields
of EEG analysis from spectral analysis to event-related
potential (ERP) analysis have to take EOG artefacts into
account. This paper focuses on ERPs, where the character-
istics of the experimental setting cause subjects to blink but
saccadic movements are usually small. Hence the focus will
be in handling the EOG blink artefact.

There are three common ways to deal with blinks: avoid-
ance, rejection and correction. A natural start is to try
to avoid blinking and thus reduce the number of blinks.
However, as everyone needs to blink, this is not always very
effective. Some of us blink more than others and certain
groups of people (such as children or patients) might not be
in the position to control their blinking.

The next step is usually to reject those parts of the signal
that contain blinks and try to manage with what is left. This
might work in some applications but sometimes, as in ERP
studies, blinks tend to overlap with the data of interest. In
such cases blink rejection often leads to unacceptable data
loss. The engineering approach is to make the best out of the
available data and try to correct for blinks, while carefully
estimating how this might bias the results.

There are several approaches to blink correction of which
the most frequently used can be classified into regression
based methods and component based methods. In regression
based methods a linear model is created to model the distri-
bution of blink artefacts across the scalp [1], [2]. Regression
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based methods require several EOG reference channels to
get a source signal for the EOG and possibly calibration
measurements to construct a blink model.

Component based methods first divide the EEG activity
into a set of source components and then construct a blink-
free data set by reconstructing the data without the blink
related components. Examples of such methods include prin-
cipal component analysis (PCA) [3], signal space projection
(SSP) [4] and blind source separation (BSS) [5], [6], [7]. Of
these the BSS methods seem to be the most popular. There
are several BSS methods available, of which independent
component analysis (ICA) using the FastICA algorithm is
used here [8], [9].

In this paper two component based, automatic blink cor-
rection algorithms are compared against each other and
to blink rejection (BR). The selected algorithms are blink
correction using combined ICA and signal space projection
(ICA-SSP) and blink correction using combined ICA and
empirical mode decomposition (ICA-EMD). Of these ICA-
SSP is a non-published combination of ICA and SSP, where
ICA is used to define the field pattern of blinks and SSP
to correct the data using spatial filtering. ICA-EMD is the
Lindsen’s combined ICA-EMD approach [3] with visual
inspection of ICs replaced with automatic detection. The
template matching approach by Li et al. is used to automati-
cally classify ICs as blink related [6]. The rejection of blinks
serves as a standard procedure to which the blink correction
methods can be compared. The main goal is to quantitatively
demonstrate the feasibility of ICA as a standard tool for blink
correction.

II. MATERIALS AND METHODS

Five voluntary adults participated in a pilot study. Data
collected from a 12 min auditory oddball task was used for
the testing of blink correction methods. The standard tone in
the oddball paradigm was a 1000 Hz sinusoid and the deviant
tone a 1250 Hz sinusoid. The 75 ms tones were presented
using a 1000 ms stimulus onset asynchrony (SOA) and there
were in total 582 standard and 101 deviant tones.

EEG was measured using a NeurOne amplifier (Mega
Electronics, Kuopio, Finland) at a sampling rate of 500 Hz
using a 125 Hz low-pass filter. A total of 26 EEG channels
and four EOG channels were measured. EOG channels were
positioned above and below the right eye (VEOG) and on the
sides of the outer canthi of both eyes (HEOG). An average
mastoid reference was used for all channels.

ERPs were analysed using the EEGLAB [10] framework
combined with custom scripting in Matlab. Prior to epoching
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the data were two-way FIR band-pass filtered from 0.5 to
30 Hz. Epoching was done using a −100 . . . 700ms window
around correctly identified deviant stimuli. Accurate stimulus
onsets were measured using an audio stimulus detector [11].
Prior to averaging epoch baselines were corrected using
−100 . . . 0ms as the epoch baseline. All epochs containing
either manually identified artefacts or amplitudes exceeding
±65 µV were excluded from the analysis. Blinks were iden-
tified from the VEOGup-VEOGdown signal using a custom
algorithm (article in preparation) that is partly inspired by
Jammes et al. [12].

A. ICA-SSP

This method corrects blinks using a combination of ICA
and orthogonal matrix projections. In this method ICA serves
as a convenient tool for extracting blink related field patterns
without manual intervention. The actual blink rejections do
not utilise the ICA decomposition. The original uncorrected
data is denoted X ∈ <d×n, where d is the number of chan-
nels and n represents time (samples). The FastICA algorithm
was first used to divide X (whole 12 min data set) into
independent components (ICs) [8], [9]. The decomposition
is

X = AS, (1)
A = [a1 . . .ak], (2)

S =

s
T
1
...
sTk

 , (3)

where A ∈ <d×k is the mixing matrix of the k ICs and
S ∈ <k×n are the component time courses. Blink related ICs
were then automatically identified using a template matching
approach that selects the blink related components using
the angle between ak and the field pattern of an average
blink [6]. The field patterns ak of the blink related ICs were
averaged and the result normalised to create a unit length,
average field pattern vector ab representing blink related
activity. The SSP method was then used to divide the data
into two orthogonal parts: one parallel and one orthogonal to
ab [4]. This was done using projections P|| = abab

T and
P⊥ = I −P||. The orthogonal part P⊥X was taken as the
corrected EEG signal. Thereafter, the ERP waveforms were
calculated.

B. ICA-EMD

This method uses ICA combined with EMD in order to
lose as little EEG signal as possible during reconstruction [3].
First the ICA decomposition of X was calculated and blink
related ICs s̃i were identified using template matching as
before. To reconstruct X without blink activity, none of
the ICs were removed but the blink related ICs s̃i were
corrected for blink activity using EMD filtering [3]. For EMD
a Matlab/C code implementation by G. Rilling was used [13].
Reconstruction was done using the resulting modified S

where ICs not related to blinks were left unchanged. How-
ever, due to the computational load of the EMD procedure,
the whole data set X could not be processed at once. As a
consequence the EMD filtering was integrated as part of the
ERP analysis. This procedure has the following steps:

1) epoch data set X into l epochs
2) remove epoch baselines
3) for each epoch Xl do:

a) calculate Sl = A−1Xl

b) low pass filter each blink related IC s̃l,i using
EMD

c) reconstruct Xl using modified Sl

4) FIR 30 Hz low-pass filtering
5) remove epoch baselines and average epochs into ERPs
Note that the band-pass filter is replaced by a 30 Hz low-

pass filter as the short epochs cannot be reliably 0.5 Hz high-
pass filtered.

C. Comparison of results

Different comparisons were made to study the effects of
blink correction. Firstly, the methods are compared using
”clean epochs”, i.e. epochs that did not overlap with manual
rejections, whose amplitude remained within the preset limits
and which did not contain blinks. Note that when using
clean epochs, the blink correction algorithms operate on data
that actually contains nothing to correct. This allows for the
direct examination of the distortions introduced by the blink
correction procedures.

Secondly, ERPs from ”blink epochs”, i.e. epochs con-
taining no visible artefacts other than blinks, are compared
against the BR ERP from clean epochs. This reveals how
much ERP related activity the correction algorithms are able
to extract from blink contaminated data.

Thirdly, the methods are compared using all available
data for each method. For the blink correction methods this
means both clean and blink epochs but for BR only the clean
epochs. This shows what kind of ERPs each method would
yield in a real analysis situation.

The epoched data sets were first averaged for each subject
and the subject averages were further averaged to create a
group average ERP.

III. RESULTS

A. Comparison using clean epochs

The comparison of group average ERPs using clean epoch
data is shown in Fig. 1. The shape of the ERP is preserved
well for both correction methods but the ERP amplitudes are
underestimated, especially at Fz. It is seen that ICA-EMD
follows the BR ERP time course more closely at Fz whereas
ICA-SSP is more accurate at Pz. The largest differences
between the correction methods are at Fz N100 and Pz P300.

B. Comparison using blink epochs

Figure 2 shows the comparison of group average ERPs
using blink epoch data for the correction methods and clean
data for BR. The shape of the ERP is again preserved but
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Fig. 1: Comparison of group average ERPs using data from
clean epochs for channels Fz and Pz. The ERP is an auditive
ERP triggered to correctly identified targets in an oddball
paradigm. The numbers in parentheses are the number of
subjects averaged.

the estimates clearly contain more noise. At Fz BSS-EMD
overestimates the N100 whereas ICA-SSP underestimates
it. For Fz P300 both methods show an increase in peak
latency. At Pz the N100 is well reproduced although BSS-
EMD overestimates the amplitude. The Pz P300 is also
overestimated, this time more by ICA-SSP.

C. Comparison using all epochs

The comparison of group average ERPs using all available
data is shown in Fig. 3. It is seen that largest distortions
in peak amplitudes occur at Fz where N100 and P300
amplitudes are underestimated by both methods. The largest
error is made by ICA-SSP for the Fz N100 ERP amplitude.

Also at Pz the N100 ERP amplitude is equally underesti-
mated by both methods. The Pz P300 ERP is well reproduced
with only small differences between methods.

Note that the Pz P300 wave has two peaks indicating
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Fig. 2: Comparison of group average ERPs using blink epoch
data for ICA-SSP and BSS-EMD but clean data for BR.

that there might exist some individual or other systematic
differences in the data.

IV. DISCUSSION

Both blink correction methods yield similar results: peak
amplitudes are underestimated and this effect is larger
frontally. The P300 wave is better reproduced than the N100
wave. The largest difference between methods appears at the
Fz N100 wave whose amplitude is severely underestimated
by ICA-SSP.

The distortions caused by ICA-SSP might be a conse-
quence of the orthogonal projection used. It projects out EEG
activity of all sources that have a blink-like scalp distribution
leaving frontal EEG electrode sites most affected.

ICA-EMD performs slightly better, most likely due to
the ICA decomposition that enables only the blink related
signal components to be corrected. However, this comes
with a computational price. Especially the EMD procedure
is computationally very expensive, even more than the ICA,
and therefore ICA-EMD cannot be directly applied to on-line
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Fig. 3: Comparison of group average ERPs using all available
data for each method.

analysis.
The results show that both blink correction methods can

be used in ERP analyses. Especially when blink rejection
leads to significant data loss and poor SNR in the ERPs, the
use of blink correction is well justified. After all, a possibly
slightly biased estimate of ERP is better than no estimate at
all.

It is also worth emphasising that the blink correction meth-
ods used here do not require any calibration measurements,
nor do they require any user intervention e.g. in detecting
the blink related ICs. Hence it is easy to add them as a step
in a larger automated analysis workflow.

This description of the effects of blink correction on the
auditive ERPs is qualitative. More data, in the form of more
subjects and longer measurements, is needed to establish

quantitative measures for the size of the observed distortions.
Another subject of future work would be the comparison of
ICA-EMD to some commonly used regression method. This
would provide insights into the differences between those
methods and help data analysts select the most appropriate
method for their application.
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