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Abstract— We evaluate the ability of multiway models to
characterize the epileptic preictal period. The understanding
of the characteristics of the period prior to the seizure onset
is a decisive step towards the development of seizure predic-
tion frameworks. Multiway models of EEG segments already
demonstrated that hidden structures may be unveiled using
tensor decomposition techniques. We propose a novel approach
using a multiway model, Parallel Factor Analysis (PARAFAC),
to identify spatial, temporal and spectral signatures of the
preictal period. The results obtained, from a dataset of 4
patients, with a total of 30 seizures, suggest that a common
structure may be involved in seizure generation. Furthermore,
the spatial signature may be related to the ictal onset region and
that determined frequency sub-bands may be more relevant in
preictal stages.

I. INTRODUCTION

Epilepsy affects approximately 1% of the world’s popula-
tion and represents the second most common brain disorder
[1]. Epilepsy is characterized by the occurrence of sponta-
neous, and usually unforeseeable seizures. Seizures are due
to excessive, abnormal activity of neuronal circuits in the
brain, particularly in the cerebral cortex and may cause a
temporary impairment in certain brain functions.

EEG has the ability to identify abnormal electrical activity
(also known as epileptiform) and represents the main diag-
nostic tool in epilepsy [2]. The EEG from epileptic patients
can be classified in different stages: the segment between
the start and the end of a seizure is known as “ictal”,
the “preictal” stage is the data segment before the seizure
and the “postictal” is the segment after the seizure. The
segment between the “postictal” and the “preictal” of the next
seizure is labeled as “interictal”. To understand ictogenesis,
the characterization of the preictal is a fundamental step [3].

One promising approach to enhance the interpretability of
multichannel EEG signals is to apply blind source separa-
tion techniques, especially multiway arrays (also known as
tensors) [4]. Multiway analysis dates back to 1920 and can
be considered as an extension of traditional two-dimensional
analysis. Tensors are higher-order generalizations of matrices
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that can be represented as X ∈ RI1×I2×···×IN , where the
order of X is N > 2. Each dimension is called a mode (or
way) and the number of variables in each mode is used to
indicate its dimensionality [5].

Common two-way analysis methods applied to multichan-
nel EEG data allow us to capture two dimensional pat-
terns (e.g. space-time, time-frequency) [6]. However, matrix
factorization methods may be insufficient to analyse large-
volume segments of data encompassing many dimensions
[4]. A more natural representation of the multi-dimensional
structure may require the use of tensors that can retain
more dimensions. EEG data for example, can be seen as a
multidimensional problem: space (electrode position), time
(samples), frequency (spectral decomposition), condition or
state (label of each sample), etc.. The neurophisiological
interpretation of the decomposition of this structure may
reveal patterns hidden in a common two dimensional analysis
[7], [8]. Promising results were presented recently modelling
the epileptic seizure structure [9].

We present a novel approach to characterize the preictal
period using multiway analysis. According to [10] there
is a decrease of power in the delta frequency band in
the preictal period in comparison to the interictal period,
also accompanied by an increase in the remaining bands.
We hypothesize that the space-time-frequency code tensor
presents this structure, and variations in the preictal state are
identifiable. To do so, we rearranged EEG segments with
the duration of three hours (two hours prior to the seizure
onset and 1 hour after). Then, using a PARAFAC model with
non-negativity constraints [11], we computed spatial, tem-
poral and spectral patterns underlying the tensor structure.
After the third-order tensor decomposition we correlated the
temporal mode of the extracted components with the target
proposed. The target is a binary vector with ’1’ in the preictal
period (we considered a 20 minutes interval) and ’0’ in the
rest samples. After determining the factor presenting the best
correlation coefficient we analysed the spatial and frequency
signature.

The paper is structured as follows. The dataset and meth-
ods are presented in section II. Section III details the results
obtained using the PARAFAC model. Finally, the conclusion
is reported in section IV.

II. METHODS

A. Dataset

The data are from four patients affected by refractory
epilepsy. The patients were monitored using long term multi-
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TABLE I
DATASET DESCRIPTION.

Patient
ID

Epileptic focus (ic-
tal onset)

Num. of
seiz.

Num. of
channels

Samp.
Freq. Hz

A P4, O2, P8, PZ 6 27 256
B F3, C3, P3, O1,

F7, T7, P7, F8, T8,
P8, FZ, CZ, PZ

9 19 256

C FP1, FP2, F3, F4,
C4, P3, P4, O1,
F7, F8, T7, T8, P8,
CZ

7 19 256

D F3, C3, P3, F7, F8,
T7, T8, P7

8 19 256

channel EEG scalp electrodes placed according to the 10-20
system. The seizures were annotated by trained technicians
and reviewed by a neurologist. The data modelled using
PARAFAC model consists, for each seizure, in a two hours
segment before the seizure onset plus a one hour segment
containing ictal and postictal data. An overview of the data
is presented in table 1. The dataset is part of the database
developed by the EPILEPSIAE project [12].

B. Feature Extraction

In order to estimate the relative frequency power for
different sub-bands of each channel, we used a five seconds
non-overlapping sliding window. For the purpose of seizure
prediction we considered that a five seconds interval is suit-
able to represent the variations of the EEG data. Moreover,
it represents a good compromise between the stationarity
assumption (long windows) and low frequency resolution
(short window). The preprocessing of the EEG data consisted
in a 50Hz notch filter to remove possible artifacts related to
the power line. In each window we computed the relative
power using the Fast Fourier Transform in the five differ-
ent sub-bands: Delta (0.1Hz-4Hz), Theta (4Hz-8Hz), Alpha
(8Hz-15Hz), Beta (15Hz-30z) and Gamma (30Hz-Nyquist
frequency). The relative power is the average of the squared
coefficients of the Fast Fourier Transform [13].

C. Multilinear model

To perform the analysis of the multiway arrays, we used
the N-way toolbox for MATLAB [14]. The toolbox contains
a comprehensive set of tools to model, decompose and
analyse multiway datasets.

A N th-order rank-one tensor is described as the outer
product of N vectors. Mathematically can be defined as:

Y = a ◦ b ◦ c if and only if yijk = aibjck, (1)

where a, b and c are column vectors of size I × 1 , J × 1
and K × 1; Y is a tensor with size I × J ×K .

A PARAFAC model can be represented as the decomposi-
tion of a tensor as a linear combination of rank-one tensors
(Fig. 1). It is possible to define the number of decompo-
sition components R. In this study we used three rank-one
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Fig. 1. The PARAFAC model, a three-way array X is expressed as the sum
of R rank-one tensors and E, the three-way tensor containing the residuals.

tensors to model the data (according to previous studies it
represents an appropriate number of components [9]). The R-
component model can be expressed as the following vector
outer product sum:

X =

R∑
r=1

ar ◦ br ◦ cr + E, (2)

where E ∈ RI×J×K is a three-way array containing the
residuals.

In the PARAFAC model we extract the same number of
components from each mode. Therefore, the model obtains a
single solution such that the rank-one tensors can be arbitrar-
ily reordered (unique up to a permutation). When one of the
three components considered is identified as descriptor of an
event (using one of the modes), that particular component
presents the signature of that event in the other modes. Let
us consider a correlation in the temporal mode of a particular
component with an event, the spatial and spectral modes of
that particular component are particularly related to the event.

Other models were proposed to decompose multiway
arrays, such as the Tucker-3 model [5], [9]. However, the
linear combination of rank-one tensor used by the simpler
PARAFAC model makes the interpretability of the solution
much easier than using other alternatives.

The algorithm used to decompose the PARAFAC model
is the alternating least squares (ALS). The ALS algorithm
finds the solution using an iterative method, successively
estimating the unknown set of parameters of a determined
mode, assuming the parameters of the remaining modes as
known [5].

D. Component analysis

A three-component PARAFAC model, extracts three com-
ponents defined in the space, time, and frequency domains.
According to the correlation of the temporal mode of each
component with the target proposed we determine the ’best’
component. We determined the value ρ representing the
correlation coefficient and the p-value that represents the
probability of rejecting the Null-Hypothesis (in other words,
the hypothesis of no correlation). A test rejected with a
significance level of 0.05 corresponds to 95% of confidence
that the observed statistic, i.e., the correlation ρ, is significant.
In this case, we can state that an observed value of a high ρ
correlation does not occur by random chance when the true
correlation is zero.
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Fig. 2. Overview of the method proposed.

After determining the component with higher correlation
and its statistical significance, we analysed the spatial and
frequency modes and compared the signatures among the
seizures of each patient (Fig. 2).

III. RESULTS

The tensor X structure for each event is composed by
the original three modes. The spatial mode corresponds to
the number of electrodes available for each patient (table 1),
the temporal mode has 2160 samples corresponding to three
hours of data (two hours before the seizure onset and one
hour after), and the frequency mode presents five samples
(one for each frequency sub-band considered). Each element
of the tensor X can be denoted by xijk and represents the
relative frequency power at the ith time sample for the jth

sub-band at kth electrode.
We scale the tensor within the spatial mode before we

proceed to the decomposition of the tensors. Different ap-
proaches were proposed to determine the initialization values
of the model [14], however none of the methods guaran-
tees convergence. We used random initialization values and
performed three runs to confirm convergence to the global
minimum. We also imposed nonnegative constraints (NTF)
in the temporal mode [15].

Once the STF code tensor, is constructed, we model X
using a three-component PARAFAC model, mathematically:

X = a1 ◦ b1 ◦ c1 + a2 ◦ b2 ◦ c2 + a3 ◦ b3 ◦ c3 + E (3)

Our objective is to identify spatial, temporal and spectral
signatures of the preictal period for each event. Also impor-
tant is to find common properties among events.

Patient A: The components that presented the best corre-
lation coefficient for the 6 seizures analysed were statistically
significant. The analysis of the spatial signatures of the most

correlated component present relevant extrema in the parietal
region, in most cases in the right hemisphere. These spatial
distributions can be related to prior knowledge about the
ictal onset. According to the electrographical review of the
EEG data, the ictal onset area was located in the right
parietal and occipital region (electrodes P4, P8, PZ, O2),
and early propagation patterns presented bilateral electrodes
in temporal and parietal lobes. The spectral signature also
presented similar patterns among events suggesting that
lower frequency sub-bands are more important. Patient B:
The patient presented 9 seizures. According to the statistical
evaluation of the correlation of the temporal components
most correlated components were statistically significant.
The electrographical review of the ictal onset of the events
revealed that different regions are involved in the ictogen-
esis processes. The spatial signatures of these components
presented two different patterns, that can, to some extent, be
related to ictal onset (a good example is presented in Fig.
3, patient B seizure number 8). The spectral signature also
presents two different patterns. Patient C: The electrodes
identified by the neurologist in the ictal onset varied among
the 7 seizures analysed. Such as with the previous patients,
all the tensors analysed presented one component with sig-
nificant correlation to the target. The spatial and spectral
components presented variations among seizures. The anal-
ysis of the first seizures emphasized the importance of left
fronto-temporal regions. Other seizures presented different
patterns (electrode C4 has a major importance in the spatial
signature of almost all seizures - associated to the ictal onset
in some of the seizures), but the onset area and the spatial
signature observed do not suggest any association. Patient
D: For this patient, the ictal onset zone defined by the
electrographical review of the data was defined bilaterally in
the fronto-temporal regions. Reviewing the spatial signatures
of the most correlated temporal modes of the tensors, we
observed that the spatial distributions were very stable among
seizures. Extreme occurred in temporal (T7 and T8) and
parietal electrodes (P3 and P4). Low frequency bands (Delta)
are consistently presented in the spectral signature of the
components. Only one tensor did not present a statistically
significant correlation to the target.

IV. DISCUSSION

We presented an approach based on multiway arrays for
the characterization of the epileptic preictal period. A three-
way PARAFAC model using non-negative constraints (NTF)
was used to fit three-dimensional datasets. We analyzed
30 seizures from four patients and found common patterns
among seizures and evidences that these similarities occur for
each patient. Only one seizure did not present a significant
correlation to the target proposed.

Patient A and B demonstrated a strong spatial relationship
between the ictal onset region and the spatial signature of
the best correlated component. In the example (patient B)
showed in Fig. 3, the only seizure with right temporo-parietal
ictal onset presented an extreme in the same region. The
frequency mode suggest that the Delta (Patient A and B)
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Fig. 3. A 3-component PARAFAC model with nonnegative constraints in the temporal mode for different seizures is displayed. The component represented
has the best correlation coefficient between the target proposed and the temporal mode. The rows represent the temporal (the yellow region represent the
preictal stage and the red line highlights the ictal onset sample), spectral and spatial modes of the components. The bottom row illustrates the spatial
signature of the 8th seizure of patient B.

and Gamma (patient B) sub-bands play an important role.
The variability presented in the results of Patient C are
confirmed by neurologist evaluation. Patient D presented a
very stable spatial signature among seizures, with multiple
areas highlighted in the topographic map among the seizures.

The results suggest that the spatial signature of the compo-
nents analysed may be related to the ictal onset zone. How-
ever, the other regions highlighted should also be carefully
analysed. The variability presented in some cases shows that
different regions may be involved in the seizure generation
processes. Spectral signature demonstrates the importance of
low frequency sub-bands.

Different research directions will be addressed as future
work. Add an additional mode (for example the class of
each point, either interictal, preictal) or concatenate the
several seizures trying to find a single model for each patient
may help to understand the structure of the data. Another
alternative approach is the analysis of dynamic tensors. The
decomposition of dynamic streams (sequence) of tensors can
be an important step towards the development of real-time
algorithms to predict seizures.

ACKNOWLEDGMENT
The authors would like to acknowledge Noel Lopes for

fruitfully discussion on this topic.

REFERENCES

[1] J. S. Duncan, J. W. Sander, S. M. Sisodiya, and M. C. Walker, “Adult
epilepsy,” Lancet, vol. 367, pp. 1087–1100, 2006.

[2] F. H. Lopes da Silva, “The Impact of EEG/MEG Signal Processing
and Modeling in the Diagnostic and Management of Epilepsy,” IEEE
Reviews in Biomedical Engineering, vol. 1, pp. 143–156, 2008.

[3] N. Mammone, J. C. Principe, F. C. Morabito, D.-S. Shiau, and J. C.
Sackellares, “Visualization and modelling of STLmax topographic
brain activity maps.,” Journal of Neuroscience Methods, vol. 189,
no. 2, pp. 281–294, 2010.

[4] A. Cichocki, Y. Washizawa, T. Rutkowski, H. Bakardjian, and A.-H.
Phan, “Noninvasive BCIs: Multiway Signal-Processing Array Decom-
positions,” Computer, vol. 41, pp. 34–42, Oct. 2008.

[5] E. Acar and B. Yener, “Unsupervised Multiway Data Analysis :,” IEEE
transactions on knowledge and data engineering, vol. 21, no. 1, pp. 6–
20, 2009.

[6] H. Lee and S. Choi, “Group nonnegative matrix factorization for
EEG classification,” Proceedings of the International Conference on
Artificial Intelligence and Statistics, vol. 5, pp. 320–327, 2009.

[7] F. Miwakeichi, E. Martı́nez-Montes, P. Valdés-Sosa, N. Nishiyama,
H. Mizuhara, and Y. Yamaguchi, “Decomposing EEG data into space-
time-frequency components using Parallel Factor Analysis.,” NeuroIm-
age, vol. 22, pp. 1035–45, July 2004.

[8] F. Estienne, N. Matthijs, D. Massart, P. Ricoux, and D. Leibovici,
“Multi-way modelling of high-dimensionality electroencephalographic
data,” Chemometrics and Intelligent Laboratory Systems, vol. 58,
pp. 59–72, Sept. 2001.

[9] E. Acar, C. Aykut-bingol, H. Bingol, R. Bro, and B. Yener, “Multiway
Analysis of Epilepsy Tensors,” Bioinformatics, vol. 23, no. 13, pp. 10–
18, 2007.

[10] F. Mormann, T. Kreuz, C. Rieke, R. G. Andrzejak, A. Kraskov,
P. David, C. E. Elger, and K. Lehnertz, “On the predictability of
epileptic seizures.,” Clinical Neurophysiology, vol. 116, pp. 569–87,
Mar. 2005.

[11] M. Mørup, L. Hansen, J. Parnas, and S. M. Arnfred, “Decomposing
the time-frequency representation of EEG using nonnegative matrix
and multi-way factorization,” 2006.

[12] M. Ihle, H. Feldwitch-Drentrup, C. A. Teixeira, A. Witon, B. Schelter,
J. Timmer, and A. Schulze-Bonhage, “EPILEPSIAE - A common
database for research on seizure prediction,” Computer Methods and
Programs in Biomedicine, 2010.

[13] C. Teixeira, B. Direito, H. Feldwisch-Drentrup, M. Valderrama,
R. Costa, C. Alvarado-Rojas, S. Nikolopoulos, M. Le Van Quyen,
J. Timmer, B. Schelter, and A. Dourado, “EPILAB: A software
package for studies on the prediction of epileptic seizures,” Journal
of Neuroscience Methods, vol. 200, pp. 257–271, July 2011.

[14] C. Andersson, “The N-way Toolbox for MATLAB,” Chemometrics
and Intelligent Laboratory Systems, vol. 52, pp. 1–4, Aug. 2000.

[15] H. Lee, Y.-D. Kim, A. Cichocki, and S. Choi, “Nonnegative tensor
factorization for continuous EEG classification.,” International Journal
of Neural Systems, vol. 17, no. 4, pp. 305–317, 2007.

624


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

