
  

 

Abstract—A novel automatic approach is developed in the 

present study to decompose high density surface 

electromyography (EMG) signals into motor unit (MU) firing 

patterns. The observed surface EMG signals are first modeled as 

a convolutive mixture of active MU sources. Contrast function 

maximization is employed to extract the first source, and 

separation of other sources is then carried out by an iterative 

deflation approach. Each extracted source is further processed 

and verified with the characteristics of motor unit action 

potential and firing patterns. The performance of the proposed 

automatic approach is evaluated in well-designed computer 

simulation.  Results show that 4.7±0.5 and 7.1±0.6 MUs were 

correctly identified in the case of 5 and 10 active MUs 

respectively. 

I. INTRODUCTION 

The recently developed technique of high-density surface 
EMG (HD-sEMG) technology utilizes electrode grids over 
the skin surface to obtain detailed information of the 
underlying motor units (MUs) activities. HD-sEMG 
technology allows the noninvasive measure of motor unit 
properties which are difficult to assess with invasive 
technology, and is able to increase the number of detectable 
motor units with respect to selective intramuscular recordings 
[1]. Because of the low-pass filtering effect of the tissues and 
the limited selectivity of the recording systems, the surface 
EMG is classically analyzed as an interference signal. 
Therefore, decomposition of HD-sEMG, which separates 
constituent motor unit action potential (MUAP) trains from 
sEMG signals, is nontrivial.  

Several methods have been developed for sEMG 
decomposition, such as template-matching techniques [2, 3], 
artificial intelligence algorithm [4], blind source separation 
(BSS) methods [5-7], and convolution kernel compensation 
(CKC) approach [8, 9]. Currently the BSS methods and CKC 
seem the most promising surface EMG decomposition 
methods since they do not rely on prior estimation of the shape 
and are not sensitive to the superimposition of action 
potentials [1]. Two mathematical models of the surface EMG 
mixing process, i.e., the instantaneous mixing model and 
convolutive mixing model, have been employed in the BSS 
methods. However,  independent component analysis (ICA) 
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[5, 6] based on an instantaneous mixing model is not able to 
separate all the MUAP trains [10] due to shape variations and 
time delays between surface action potentials detected at 
different electrode locations. A blind source separation 
approach with a more advanced convolutive mixing model 
may be able to lead to superior performance.  

In this study, a novel HD-sEMG decomposition method is 
developed based on the convolutive BSS. The new method 
models the surface EMG mixing process as a linear 
convolutive mixture, extracts the first source using the 
contrast optimization approach and employs an iterative 
deflation approach to estimate other MUAP trains.  

II. METHODS 

A. Model and problem formulation 

The multichannel sEMG can be modeled as a 
multiple-input-multiple-output (MIMO) linear time invariant 
(LTI) system, which is a finite impulse response (FIR) filter 

with impulse response 
n

n))((( A of length L [8]. Assuming 

a noise-free model, an M-dimensional discrete time sEMG 
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where )(lA  is an M×N matrix which contains the l’th mixing 

filter coefficients. In order to solve the separation problem 
blindly, the following assumptions on the characteristics of 

the sources are adopted: 1) },1{),( Njns
j

 are 

stationary, zero-mean random processes with unit variance, 
and statistically mutually independent; 2) the number of 
sources must be less than or equal to the number of observed 
signals (N≤M). 

Recovering source signals from the observed signals only 
is equivalent to developing a MIMO-LTI inverse separating 
system, i.e., a separator [11, 12]. If the response of the 

separator is denoted by
n

n))(((B , the separated outputs are 

then given by:  
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In case of a successful separation, the components of 

)(ny hence correspond in any order to the components of 

)(ns  up to a scalar filter. In an iterative deflation approach 

[11, 13], the separated output )(ny  can be constructed 

component by component. A component )(ny  can be 

extracted by estimating the corresponding row of )(nB : 










M

i k

ii

k

knxkbknkny

1

1K

0

1-K

0

)()()()()( xb  ,   (3) 

where )(kb
i

 represents the finite impulse response with 

length K of a causal separating filter.  

B. Convolutive BSS in a deflation procedure 

According to the assumptions on the sources described in 
the previous section, the source with the maximization of 
nongaussianity will be detected easily . Using kurtosis as a 
practical measure of nongaussianity, the extraction is 
achieved by maximizing a kurtosis contrast function: 
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where the kurtosis )( ykurt  is the fourth-order autocumulant 

of a separated component )(ny . A gradient algorithm is 

employed to maximize the contrast function [11]. At 

iteration p , we compute  
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where, 
)( p

  is the step size, which can be determined 

optimally at each step; )(/))(( kkJ bb   is the gradient of 

the contrast function with respect to )(kb . 

After one of the sources (or a filtered version of it) is 
extracted, a so-called “deflation” method subtracts its 
contribution from the observed signals to obtain a mixture of 
(N-1) sources [11]. This operation can be performed by a 
linear least square approach, and then the remaining problem 
amounts to separating (N-1) sources from this reduced size 
mixture (whose size has been deflated). Repeating this 
procedure iteratively leads to the extraction of all the N 
sources. More precisely, we can subtract the contributions 

)(
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z  of the (q-1)’th source )(
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 from the 

corresponding mixture signals )(
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where 
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t  is the impulse response of a filter with 1 

inputs and M outputs, which can be derived as a solution of a 
mean square linear estimation problem by minimizing   
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C. HD-sEMG decomposition algorithm 

Based on the convolutive mixture model and BSS method 
in a deflation approach, a novel algorithm is developed to 
decompose HD-sEMG into MU firing patterns. Fig. 1 shows a 
flowchart of the proposed algorithm. 

 

Figure 1.  Flowchart of the high density sEMG decomposition algorithm  

Time delay between signals at different electrodes along 
muscle fibers becomes significant in HD-sEMG recordings 
because of propagation of the intracellular potentials along 
muscle fibers. Cross-correlation of signals between 
consecutive channels along the muscle fibers is utilized to 
correct such time delays. A nonlinear energy operator (NEO) 
is employed to highlight the action potential peak, and then the 
NEO output is convolved with a Bartlett window to eliminate 
the spurious peaks due to background noise [14]. In this way, 
time delays are corrected and raw sEMG signals were aligned 
accurately by calculating the cross-correlation of the NEO 
filtered signals. 

After time delay correction, the convolutive blind source 
separation algorithm with a deflation procedure (Section B) is 
employed to extract each MU from interference signals. The 
first source is firstly retrieved by calculating (5) and (6) 
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iteratively to maximize the kurtosis contrast function (4). The 

length of the causal separating filter )(kb
i

is set to 10. 

The retrieved source signal is further post-processed to 
remove noise and to guarantee waveform similarity at each 
putative discharge time. Once the amplitude exceeds an 
adaptive threshold (th=5×rms, rms is the root-mean-square 
value), a peak is identified. Active segments which have a 
peak centered in a window of 10.5ms are suspected to contain 
MU activities and are retained. The similarity of active 
segments is calculated using the Euclidean distance, and a 
template is computed by averaging the active segments. The 
outlier segment which has dissimilar waveform with others is 
replaced with the template. Thus, the active segments in the 
source signal are homogeneity and more reliable particularly 
in case of superimposition.  

The contributions of each retrieved source signal at all 
electrodes are estimated and subtracted from the observation 
signals according to (7)-(9). The recovered source signal is 
rechecked because of the effect of noise and the accumulation 
of estimation errors. If more than 5 peaks are detected in 1 sec 
in average, the recovered source is considered as a 
physiologically plausible MU source and its contribution is 
adopted as MUAP trains. If non valid MU source is recovered 
in three consecutive iterations, there is no further MU need to 
be identified. Otherwise, the convolutive BSS process is 
performed iteratively to extract sources from the updated 
observation signals. 

III. RESULTS  

A. Simulation of surface EMG 

Synthetic surface EMG signals were generated using a 
planar volume conductor model [15] to test the performance 
of the proposed method. The volume conductor model consist 
of an anisotropic, semi-infinite muscle layer with a thickness 
of 10 mm , isotropic subcutaneous with a thickness of 3 mm 
and skin layer with a thickness of 1 mm. Parameters employed 

in the computer simulation are listed in the Tab.Ⅰ.  The 

intracellular action potential of a muscle fiber was modeled 
using a current tripole model [16]. A random number of fibers 
(uniformly distributed between 100 and 300) with the circular 
MU territories of 20 fibers/mm

2 
was assumed in active MUs. 

Active MUs were also assumed with normally distributed 
conduction velocities (4.0 ± 0.3 m/s) and with the smallest 
MUs assigned the slowest conduction velocities. The MU 
firing patterns were represented by an inter-pulse interval 
(IPI) Gaussian distribution [17].  

A surface EMG recording grid of 8×8 electrodes with 
5-mm inter-electrode distance in both directions was assumed 
in the present study to record surface EMG signals. The center 
of the grid was placed at the center of the muscle. Surface 
EMG signals were sampled at a sampling frequency of 2000 
Hz. Twenty simulations were performed by assuming 5 and 10 
active MUs respectively.  In each simulation, the position of 
the active MUs, numbers of fibers, conduction velocity, and 
discharging patterns were all randomly generated. Zero-mean 
Gaussian noise with signal-to-noise ratio (SNR) 15 and 20 dB 
was added to the simulated recordings, resulting 40 test 
signals for each number of active MUs. 

TABLE I.  PARAMETERS USED FOR SURFACE EMG SIMULATION 

Parameter Value 

Conductivity of muscle(transverse) 0.1 S/m 

Conductivity of muscle(longitudinal) 0.5 S/m 

Conductivity of subcutaneous tissue 0.05 S/m 

Conductivity of skin 0.1 S/m 

Average half-fiber length 50 mm 

Tendon ending spread 5mm 

Innervation zone spread 5mm 

Conduction velocity 4.0 ± 0.3 m/s 

Mean IPI 90±25ms, range=[40…40ms] 

IPI variation 10% of mean IPI 

MU starting time 0 to mean IPI 

B. Decomposition results 

Fig.2 illustrates a typical decomposition result of 64 
channel simulated sEMG signals (SNR=20dB) with the 
proposed convolutive BSS decomposition method. A portion 
of one channel signal is shown Fig.2 (a). The discharges of 
each identified MU are indicated by an assigned label at top of 
the signal. All the MU discharges can be correctly detected, 
especially when the number of superimposed potential actions 
is high at about 0.04s, 0.32s and 0.4s. The estimated MUAP 
templates and the true simulated waveforms are presented in 
Fig.2 (b).  

Decomposition results of 80 simulated HD-sEMG signals 

are summarized in Tab.Ⅱ. Each detected MU discharge is 

assumed to be identified correctly if it is within ±2 samples 
from its true position. Only the MUs with over 90% correctly 
identified discharges are assumed to be identified. The 
deflation process is completed after 8 and 12 iterations on 
average in the case of 5 and 10 active MUs respectively. The 

results in Tab. Ⅱ illustrate the number of identified MUs, 

average MU depth in muscle and average number of fibers of 
identified and missed MUs with respect to four test conditions. 
Most MUs (4.7±0.5 and 7.1±0.6 respectively) can be 
correctly identified in the case of 5 and 10 active MUs with 
20dB SNR. Several MUs were missed because they were 
deeper in muscle tissue or had fewer fibers. The numbers of 
identified MUs decreased with increasing noise power and 
about half of the 10 active MUs were identified for 15dB SNR. 
On average, more than 93 ± 4 % of discharges were correctly 
detected for each identified MU. 

As expected, the identification rate drops with the 
decreasing SNR and the increasing active MUs. The relative 
proportion of successfully identified motor units is generally 
related to motor-unit size and distance between the MUs and 
sEMG electrodes. The accumulation of estimation errors after 
several iterative deflation loops may become excessive. 
Therefore, some active MUs with weaken contribution to the 
recordings may be missed.  
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Figure 2.  Decomposition example using convolutive BSS on synthetic 

sEMG signals. 

TABLE II.  DECOMPOSITION RESULTS ON SIMULATED SIGNALS 

Number of 

simulated 

MUs and 

SNR(dB) 

Average 

Number 

of 

identified 

MUs 

Average depth in 

muscle 

Average number of 

fibers 

identified missed identified missed 

5 
20 4.7±0.5 4.8±0.5 7.0±0.9 192±62 146±60 

15 3.7±0.5 4.2±0.6 6.4±1.0 199±65 165±51 

10 
20 7.1±0.6 4.1±1.4 7.1±1.0 197±70 166±56 

15 5.2±0.8 3.7±1.2 6.3±1.5 202±65 173±66 

IV. CONCLUSION 

An automatic high density surface EMG decomposition 

algorithm was successfully developed based on a convolutive 

blind source separation approach. Computer simulation shows 

that most active MUs can be correctly identified and the 

MUAP trains can be accurately reconstructed during 

lower-level contractions when there are not too much active 

MUs. The proposed algorithm also demonstrated the 

capability in satisfactorily solving superimpositions of MUAP 

trains. 
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