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Abstract—Blind source separation by independent 

component analysis has been applied extensively in the 

biomedical field for extracting different contributing sources in 

a signal. Regarding lung sounds analysis to isolate the 

adventitious sounds from normal breathing sound is relevant. 

In this work the performance of FastICA, Infomax, JADE and 

TDSEP algorithms was assessed using different scenarios 

including simulated fine and coarse crackles embedded in 

recorded normal breathing sounds. Our results pointed out 

that Infomax obtained the minimum Amari index (0.10037) and 

the maximum signal to interference ratio (1.4578e+009). 

Afterwards, Infomax was applied to 25 channels of recorded 

normal breathing sound where simulated fine and coarse 

crackles were added including acoustic propagation effects. A 

robust blind crackle separation could improve previous results 

in generating an adventitious acoustic thoracic imaging. 

 

I. INTRODUCTION 

Several pulmonary diseases are clinically described by 

the occurrence of discontinuous adventitious lung sounds, 

also known as crackles. In parenchymal lung diseases fine 

and coarse crackles have been found during the inspiratory 

and expiratory phases; for example, in fibrotic diseases fine 

crackles are more frequently found at the end of the 

inspiratory phase. The automated detection of crackles is 

still an open research area due to the nonstationarity 

behavior of both crackles and breathing sounds (BS) and the 

signal-to-noise ratio (SNR) between them, among others 

issues. Furthermore, multichannel BS acquisition systems 

have imposed to deal with the spatial changes of crackles 

and BS characteristics [1]. Recently, the acoustic thoracic 

imaging based on the number of detected crackles in 

recorded multichannel BS has been proposed [2]. In clinical 

settings the adventitious image may allow to identify the 

extent of the pulmonary areas where crackles are occurring. 

Therefore, providing a confident adventitious image might 

help to the diagnosis of pulmonary disorders. However, it is 

also necessary to outline the image by identify the crackle 

sources considering the acoustic transmission phenomenon 

in lung parenchyma. 

In this work we assessed different independent 

component analysis (ICA) algorithms such as FastICA, 

Information-Maximization (Infomax), Joint Approximate 

Diagonalization of Eigenmatrices (JADE) and Temporal 

Decorrelation Source Separation (TDSEP) by the Amari 
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index and the signal to interference ratio to separate crackles 

from normal breathing sounds (NBS) in simulated scenarios 

(1) without and (2) with crackles transmission between 

channels. The first step allows selecting an optimal ICA 

algorithm while the second permits to evaluate the selected 

optimal ICA algorithm considering the transmission 

phenomenon. 
 

II. THEORY 

A. Blind Source Separation by ICA 

Blind Source Separation (BSS) by ICA is a statistical 

technique which works on recovering a set of unobserved 

signals from measured signals that are linear mixtures of 

unknown independent sources [3]. The statement that 

different sensors receive different mixtures of the sources is 

exploited by BSS; that is spatial diversity. Spatial diversity 

means that BSS looks for structures across the measured 

signals and not (necessarily) across time.  

In the simplest BSS model, noise-free, the measured 

signals x(t) are represented by the equation  

)()( tstx A                                    (1) 

where s(t) are the source signals and A is a mixing matrix; in 

this mixing model, the measured signals are the product of A 

by the sources [4]. A is a full rank matrix, invertible and its 

columns are assumed to be linearly independent. Estimating 

the matrix A, computing its inverse (W), the independent 

components are obtained by: 
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Figure 1. (a) Recorded basal NBS and simulated inspiratory (red) and 
expiratory (green) crackles with different time lag among them and 

(b) mixed sources (simulated measured signals). 
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B. ICA algorithms 

Although a considerable amount of literature has been 

published on ICA algorithms, four algorithms can be classed 

as the most popular: FastICA, Infomax, JADE and TDSEP. 

Two preprocessing strategy are common in these algorithms: 

a) centering (subtract the mean of the mixed signal) and b) 

whitening, i.e. its components are uncorrelated and their 

variances equal unity [5]. 
 
1) FastICA is an iterative procedure which calculates the 

independent sources employing higher order statistics and 

based on a fixed-point scheme [5, 6]. Minimizing the 

negentropy of the mixture, uncorrelated and independent 

sources with non-gaussian distributions as possible are 

obtained. An important contribution of Hyvärinen and Oja is 

the way to calculate the negentropy, instead of using 

kurtosis; the authors propose the following approximation 

[5]: 
2)}]({)}({[)( vGEyGEyJ 
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where v is a Gaussian variable with zero mean and unit 

variance as same as the variable y. The selection of the non-

linear function G (.) in (3) depends on the problem.  

2) Infomax finds independent signals by maximizing the 

joint entropy H(y) of the outputs of a neural network, 

minimizing the mutual information (I) between the output 

components [7]. In the case of two random variables, the 

joint entropy is defined as: 
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Through maximizing the individual entropies, H(X) and 

H(Y), and minimizing the I(X, Y) between the two signals, it 

is possible to maximize the joint entropy. Infomax switches 

between two learning rules: one for sub-Gaussian and one 

for super-Gaussian sources. 

3) JADE determines the mixing matrix based on a joint 

approximate diagonalization of eigen-matrices [8]. The 

covariance matrix of the data Cx is transformed such that the 

second-order correlations of the data are zero by means of 

performing an eigen-value decomposition. A whitening 

matrix M is computed and the algorithm finds an orthogonal 

joint diagonalization by a unitary matrix U. Finally, the 

mixing matrix A is estimated as:  
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4) TDSEP minimizes temporal cross correlation between 

the signals [9]. This algorithm is based on several time 

delayed () second order correlation matrices. For sources 

with stationary waveforms and unique power spectra, the 

time structure is adequately captured by temporal cross-

covariances; the source covariance matrix 
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τ
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is diagonal for all time lags  = 1,2,3, …, where χ
τ

C
 
is the 

signal covariance matrix. The parameter  must be chosen to 

take advantage of the temporal structure of the signals. 

III. METHODOLOGY 

A. Acoustic Signals Recording and Preprocessing  

To generate the simulated scenarios multichannel NBS 

from a healthy subject were used. The signals were acquired 

by a microphone array of 5 by 5; the subject was seated, 

breathing through a calibrated Fleisch type 

pneumotachograph and wearing a nose clip. The sensor 

array and the associated nomenclature are described 

elsewhere [10]. To digitalize the multichannel NBS and 

airflow signals a 12-bit A/D card was used with a sampling 

frequency of 10 kHz. Signals were processed by a band pass 

filter with cutoff frequencies of 75 and 800 Hz.  
 

B. Simulated scenarios for the selection of the ICA algorithm 

Simulated scenarios were achieved linearly combining one 

NBS channel and simulated crackles by a random mixing 

matrix B (see fig. 1). 

during the 

inspiratory and expiratory phases of NBS

crackles inserted in apical NBS; crackles 

inserted in basal NBS; crackles inserted in apical 

NBS; crackles inserted in basal NBS; 

crackles inserted in apical NBS; and finally, 

crackles inserted in basal NBS. The idea was to 

assess the performance of the four ICA algorithms 

considering NBS spatial differences [11]. The time series of 

simulated fine and coarse crackles were created considering 

different time lags and different amplitudes among them, see 

Fig. 1. Fine and coarse crackles were simulated using the 

mathematical function proposed by Kiyokawa et al. [12]: 
 

)log()25.0log(

)4sin())}5.0(2cos(1{5.0)(

0

5.0

t

ttty



 

                    

(7) 

where y(t) represents the simulated crackle. The 

mathematical model of 7 keeps the reported time domain 

characteristics for fine crackles as the initial deflection width 

(IDW) of 0.5 ms and two cycle duration (2CD) of 5ms, 

while for coarse crackles (CC) IDW is 1.2 ms and 2CD of 9 

ms [10]. 
 

C. ICA algorithm selection by ICASSO 

The selection of the optimal ICA algorithm to recover 

respiratory sounds was achieved using the ICASSO software 

[13]. Running each algorithm ten times with random initial 

conditions and bootstrapping the data every time, both the 

algorithmic and statistic reliability were assessed. ICASSO 

clusters the estimated components according to their mutual 

similarities using an agglomerative clustering with average 

linkage criterion. Independent components (ICs) shown on 

section IV corresponds to the centroids of the clusters 

calculated by ICASSO. Afterwards, the optimal chosen ICA 

algorithm was applied to a scenario of 25 channels of 

acoustic information where fine and coarse crackles were 

inserted into three NBS channels. The source channels 
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neighbor received an attenuated and delayed version of the 

three sources according to sound speed in parenchyma [14]. 

The signal to noise ratio was low enough to mask the 

crackles into NBS, see Fig. 2. 
 

D. Performance Indexes 

The performance of the ICA algorithms was evaluated by: 

1) An inspection of the plots of the estimates. 

2) Using the Amari index (Am): 
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where P=(pij)=(WB); P is a permutation matrix. Am is an 

assessment of the interference of source n on measurement 

m [15]. 

3)The Signal to Interference Ratio (SIR) [16], defined as: 
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where 

iŝ
 

represents the estimated sources, and 
is  the 

reference signal; the inner product is a measurement of the 

distance between two signals. When the estimated source is 

orthogonal to the reference signal, SIR is equal to zero; but if 

the estimated source is equal to a gain factor g of this signal,

ii gss ˆ , SIR is infinite. 

 

IV. RESULTS 

 The results in this section were obtained using the ICA 

parameters as follows: 

1) FastICA: 

G(y) = y3.

2) Infomax: the extended version was used assuming sub- 

and super-Gaussian distributions mixed sources. 

3) JADE: the implementation to real signals was used. 

4) TDSEP: time lags  = 0, 1, 2, ..., 20 were used. 

The Amari indexes for the six different test conditions are 

listed in Table I; lower values indicate better separation. In 

general, Infomax outperforms the other three ICA algorithms 

as the minimum Amari index value was obtained in three of 

the six conditions. Table II includes the maximal SIR values 

in both inspiratory and expiratory phases for the six different 

test conditions; higher SIR values indicate a better estimated 

quality. The values listed in Table II reflect that Infomax is 

the optimal ICA algorithm for the acoustic BBS. As can be 

seen in Fig. 3, according to ICASSO FastICA, JADE and 

Infomax could separate correctly the three sources; however 

TDSEP mixed the inspiratory and expiratory crackles 

information. Furthermore, Infomax had the highest SIR 

values for both phases. 

Fig. 4(a) shows the estimated ICs obtained by Infomax 

algorithm for the case of three fine crackles sources. The 

simulated sources were inserted at channels PRC4, PM4 and 

PLC3 during the inspiratory phase (channels 9, 17 and 19 in 

Fig. 2) and their information was propagated to the 

corresponding 8 surrounding channels of the sensor array. 

The number of inserted fine crackles was 10, 10 and 5, 

respectively. As can be seen in Fig. 4(a), the three sources 

were rightly separated in IC2, IC8 and IC16 while the rest of 

the ICs look like NBS; the ten estimated fine crackles of IC8 

are shown in the zoom window of Fig. 4(b). 
  

V. DISCUSSION 

The assessment of FastICA, Infomax, JADE and TDSEP 

algorithms was achieved using acquired NBS and simulated 

fine and coarse crackles. The simulated crackles allowed 

generating controlled scenarios to apply two indexes with 

the aim to find the optimal ICA algorithm for separate lung 

sounds sources. In this work the spatial differences in lung 

sounds was considered as NBS of 25 channels distributed on 

the thoracic surface. Also, transmission effects were 

included as the source information was propagated to others 

channels. The results indicate that Infomax represents a good 

choice for BBS as its Amari index and SIR value were the 

best. It is worthy to note the assumptions that apply to the 

problem at hand. In lung diseases it is assumed that crackles 

are added to NBS [10]; furthermore, NBS are believed to be 

generated by turbulences in the bronchial tree while crackles 

are generated by the opening of airways that are abnormally 

closed. Moreover, crackles sound travels through the lung 

parenchyma with certain speed and attenuated by thermal 

processes [14] before reaching the thoracic surface. 

Consequently, (1) crackles and NBS could be assumed as 

TABLE I 

Amari index 

Condition 
 

FastICA 
Algorithms 

Infomax 

 

JADE 

 

TDSEP 

1 0.20942 0.23478 0.20249 0.16538 

2 0.3846 0.10037 0.38326 1.0868 

3 0.26898 0.21288 0.26932 0.46549 
4 0.33388 0.38021 0.33186 0.39507 

5 0.065303 0.080183 0.067617 0.21828 

6 0.34446 0.1459 0.34551 0.19031 

*Numbers in bold indicate the test conditions with lower Amari 

index value 

Inspiratory Phase 

n (samples) 

Figure 2. 25 channels of acoustic information plus simulated 

fine crackles into three NBS channels, 9, 17 and 19. 
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(b) 

(a) 

Figure 4. Infomax algorithm results, (a) The extracted 25 independent 

components and (b) zoom window of the component number 8. 

independent sources since they are generated by different 

phenomena, (2) the spatial diversity assumption could be 

achieved since fine and coarse crackles are recorded by 

several sensors while the NBS is more local, and (3) crackles 

could be considered as point sources; therefore, the sensor 

that early records the arriving crackles could be considered 

as the source sensor but the rest as the neighbor sensors.  

A robust blind crackle separation may improve previous 

results in generating an adventitious acoustic thoracic 

imaging (AATI) since crackles transmission between sensor 

channels was not considered [2]; the former may impact in 

the outline of the altered lung zone in AATI.  
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TABLE II 
SIR MAX VALUES 

 C 
 

     FastICA 
Algorithms 

      Infomax 

 
       JADE 

 
     TDSEP 

 I E I E I E I E 

1 1.3645e+004 2.9347e+004 4.7543e+004 5.4913e+008 1.7926e+004 2.8771e+004 98.8087 95.5812 

2 443.9888 7.9038e+007 5.6750e+004 2.2902e+008 439.8737 1.0543e+008 1.6247 1.6242 
3 2.2503e+004 8.2395e+003 1.0222e+005 5.5479e+005 2.6559e+004 7.3529e+003 19.0319 20.9810 

4 1.1330e+003 4.0603e+004 5.8647e+003 1.4578e+009 1.1215e+003 3.4631e+004 38.0958 51.4769 

5 9.7210e+004 8.6794e+003 8.2771e+004 1.3435e+005 1.6971e+005 8.5139e+003 208.3684 289.9187 
6 485.0772 2.2587e+004 1.0808e+004 4.0692e+006 479.0568 2.1627e+004 367.9525 383.5735 

                             *Numbers in bold indicate the test condition with maximal SIR values. I: inspiratory phase and E: expiratory phase. 

 
Am=0.3846 

Am=0.38326 

Am=0.10037 

Am=0.10868 

Figure 3. ICASSO results. (left) Estimated sources for simulated cases as 

shown in Fig. 1(b), from top to bottom FASTICA, JADE, INFOMAX, 

TDSEP, respectively, and (right) the associated inspiratory and 

expiratory SIR values. 
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