
  

Abstract— We present here a novel and patented completely 
automated IMT measurement system that we developed for 
common carotid arterial ultrasound longitudinal images, called 
Carotid Measurement Using Dual Snakes (CMUDS) - a class of 
AtheroEdge™ system. CMUDS is a dual deformable 
parametric model (snake) system where the dual snakes evolve 
simultaneously and are forced to maintain a regularized 
distance to prevent collapsing or diverging. We benchmarked 
CMUDS against a conventional single snake (CMUSS). 
CMUDS is totally automatic while CMUSS is semi-automatic. 
For performance evaluation, two readers manually traced the 
lumen-intima (LI) and media-adventitia (MA) borders of our 
multi-institutional, multi-ethnic, and multi-scanner database of 
655 longitudinal B-Mode ultrasound images. CMUDS and 
CMUSS correctly processed all 665 images. The average IMT 
biases were equal to 0.030±0.284 mm and -0.004±0.273 mm for 
CMUDS, and -0.011±0.329 mm and -0.045±0.317 mm for 
CMUSS. The Figure of Merit of the system was 96.0% and 
99.6% for CMUDS and 98.5% and 94.4% for CMUSS. 
CMUDS improved accuracy (Wilcoxon, p<0.02) and 
reproducibility (Fisher, p<3 10-2), proving that the novel 
CMUDS system is adaptable to large multi-centric studies, 
where a standard IMT measurement technique is required. 

I. INTRODUCTION 
validated predictor of cardiovascular accidents is the      
intima-media thickness (IMT) of the carotid arteries 
[1], which is also associated to several cardiovascular 

diseases (CVDs) [2]. In clinical practice, the sonographer 
generally manually measures the IMT by placing two caliper 
markers in correspondence of the lumen-intima (LI) and 
media-adventitia (MA) interfaces. The distance between the 
two markers is the estimation of the IMT. Polak et al., 
however, recently showed that the inter-reader variability in 
the IMT measurement could cause significant bias in the 
estimation of the CVD risk of subjects [3].  
 Touboul et al. also discussed the need for standardization 
in IMT measurement to overcome the limits of manual 
measurements, showing how a computer system for IMT 
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measurement that ensures high accuracy and reproducibility 
coupled with high versatility is a clear requirement in multi-
center studies [4]. 

Parametric deformable models (i.e., snakes) are one of the 
principal typologies of computer methods for carotid far wall 
segmentation and IMT measurement, because they can 
accurately follow the regular profile of the wall layers. They 
are very versatile but can suffer from the need of an 
initialization (i.e., starting points of the snake algorithm) and 
from their sensitivity to noise. We developed an innovative 
Dual Snake paradigm for the automatic tracings of the 
carotid LI/MA borders and IMT measurement. We called 
this novel system CMUDS (Carotid Measurement Using 
Dual Snake). We validated CMUDS on a multi-institutional, 
multi-ethnic, and multi-scanner database of 665 longitudinal 
carotid B-Mode images and finally, we benchmarked 
CMUDS against a traditional snake model as proposed by 
Loizou et al. (called here CMUSS: Carotid Measurement 
Using Single Snake) [5]. 

II. MATERIALS AND METHODS 

A. CMUDS: Carotid Measurement Using Dual Snakes 
Snake-based segmentation techniques must trace the 

profiles of the LI and MA interfaces. When used as 
deformable models, snakes are usually initialized close to 
these interfaces. They must then evolve until their final 
boundary is correctly aligned with the LI/MA profiles as 
interpreted by the reader. In our technique, this process is 
completely automated, meaning that the initialization, 
evolution, and final convergence do not require any 
intervention by the user. Our CMUDS system consists of 
three steps: (1) the automated carotid recognition and tracing 
of the far adventitia profile (ADF); (2) the initialization of 
two snake models (one for the LI interface and one for the 
MA); (3) the convergence and final LI/MA tracing. 

1) Step I: Carotid recognition and ADF wall tracing 
For carotid recognition, the ADF profile was automatically 

traced by means of a recognition system based on a first-
order Gaussian filtering and multi-resolution approach. We 
named this technique CAMES and it is fully described in the 
work by Molinari et al. [6]. Briefly, it is based on down-
sampling the image, speckle reduction, filtering by a first 
order derivative Gaussian kernel, column-by-column 
heuristic search for the ADF point, and final up-sampling to 
the original image size.  

2) Step 2: LI and MA snakes initializations 
The ADF profile was then used to initialize both snakes. 

The LI snake was initialized by shifting the ADF profile 3 
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mm upwards (towards the near wall). Our database showed a 
maximum IMT value of 1.7 mm, so empirically twice this 
distance would ensure that the LI snake was placed in the 
carotid lumen. So we took a round figure of 3 mm for the 
entire database. The MA snake was initialized by shifting the 
ADF profile upwards by 0.1 mm. This value was optimal to 
place the initial MA snake close to the interface without 
placing it in between the LI/MA boundaries. Fig. 1 shows 
the ADF profile and the snake initializations. 

3) Step 3: CMUDS snake model and its convergence 
A 2-D parametric deformable model (snake) is a 

mathematical description of a contour evolving on the image 
and driven by two energy types: internal energies and 
external energies. Convergence is reached when the internal 
forces counterbalance the external ones.  

Let v s( )  represent the snake, a 2D contour, where the 

parameter s is the curvilinear coordinate on the image. The 
curvilinear coordinate s is space-normalized in the range 
[0,1]. The typical energy functional of a snake v s( )  can be 

expressed as: 

E v s( )( ) = ! v ' s( )
2
+!e v s( )( )+! v s( )!e v s( )( ) ds

0

1
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In eq. (1), the internal energy Ei  consists of the first term: 

Ei v s( )( ) = !  v ' s( )
2
ds

0

1
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Whereas the external energy Ee  is the second term: 

Ee v s( )( ) = !  e v s( )( )+!  v s( )!e v s( )( ) ds
0

1

"  (3) 

The internal energy is used to constrain the shape of the 

contour and its properties. Specifically, the term !  v ' s( )
2

 

prevents the snake from presenting an excessive curvature. 
The parameter !  is used to control the curvature, whereas 
v ' s( )  is the first-order derivative of the snake curve v s( ) . 

The square modulus is needed in order to make this term 
energy. 

The external energy is used to attract the snake towards the 
image discontinuities. The first term of the external energy 
!  e v s( )( )  is used for capturing the LI/MA interfaces of the 

far wall. In fact, the functional e x , y( )  is an edge operator 

called FOAM (First Order Absolute Moment), which was 

proposed by Demi et al. [7] and adapted by Faita et al. for 
detection of the LI/MA edges [8]. This first term of the 
external energy acts as a stopping function, having a high 
weight when the snake points are in correspondence to the 
image edges and blocking the points there. The parameter !  
controls the strength of this stopping force. 

The energy term !  e v s( )( )  is null when the snake points 

are placed far from the edges, where the FOAM operator is 
equal to zero. Therefore, we added a second term of external 

energy, !  v s( )!e v s( )( ) , which attracts the snake points 

when they are far from the edges. This term computes the 
distance (i.e., the difference) between the edges e x , y( )  of 

the image and the snake position. So, even if the snake is 
placed where the FOAM is null, it is attracted by the closest 
edge of FOAM itself, with an attraction force that is 
proportional to the distance of the snake from the edge. !  
describes the attraction energy of this second term, which is 
always positive when the snake is far from the edges, but 
becomes zero valued when the snake is found in 
correspondence to the edges. The joint action of the two 
terms of external energy attracts the snake to the edges and 
locks the snake once it has reached a stable position.  

We used two distinct snakes for the two LI/MA profiles, so 
there was a total of six parameters: three for the LI snake  
(!LI , !LI , and ! LI ) and three for the MA snake (!MA , 

!MA , and !MA ). Table 1 summarizes these parameter values, 
which we chose after pilot tests on a subset of 20 images 
randomly selected from our database (results not reported 
here). Different parameters for the LI and MA snakes were 
necessary because, as Faita et al. [8] pointed out, the LI and 
MA edges have different intensities in the FOAM edge map. 
So initially, the two snakes had the same shape. Then, each 
snake evolved according to their respective energies. We 
observed that two possible errors could be presented when 

 
 
Fig. 1 Automated initialization of the lumen-intima (LI - top 
white line) and media-adventitia (MA - dashed line) snakes 
starting from the far adventitia (ADF - bottom white line) profile. 
 
 
 
 

 
Fig. 2. Samples of CMUSS (left column) and CMUDS LI/MA 
tracings. Panels A and B are relative to a straight and horizontal 
artery, and panels C and D to a inclined artery. In these images, 
CMUSS and CMUDS both showed accurate tracings. CMUSSLI 
– lumen-intima tracing by CMUSS; CMUSSMA – media-
adventitia tracing by CMUSS; CMUDSLI – lumen-intima tracing 
by CMUDS; CMUDSMA – media-adventitia tracing by CMUDS. 
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the LI and MA snakes (a) collapse on each other; or (b) 
diverge more than 3 mm from each other. 

To prevent these two potential error conditions, we 
introduced a mutual constraint that forced the snakes to 
maintain a constrained distance from one other. At each 
iteration step of the snake’s evolution, we computed the 
coordinates of both snakes. When the snakes were too close 
or too far from each other (i.e., the points of the snakes had a 
mutual distance lower than 0.3 mm or higher than 3 mm, 
respectively) we shifted those points up or down until the 
distance was within the imposed constraints. We used the 
Polyline distance (PDM) as the distance metric [9], because 
it is almost insensible to the number of points constituting 
the LI/MA profiles. Finally, we set a maximum limit on the 
number of iterations (called 

! 

IMAX ), which we took equal to 
200.  

 

TABLE I – PARAMETERS VALUE FOR THE LI AND MA SNAKES. SUCH 
VALUES ARE SAME FOR ALL THE IMAGES OF THE DATABASE. 
 !  

(curvature) 
!  

(stopping energy) 
!  

(attraction energy) 
LI snake 0.5 0.1 0.1 

MA snake 0.5 0.2 0.05 
 

B. CMUSS: Carotid Measurement Using a Single Snake 
The single snake method (CMUSS) we adapted was the 

technique proposed by Loizou et al. [5], since it was the 
most performing and established snake-based technique for 
LI/MA segmentation and IMT measurement. The first step is 
based on image pre-processing and snake initialization 
whereas the second step is the snake-based LI/MA 
segmentation. Complete details of this algorithm can be 
found in [5]. 

C. Image database, performance assessment and 
statistics 
We tested CMUDS and CMUSS on a database of 665 

longitudinal B-Mode images, which is multi-institutional, 
multi-ethnic, multi-scanner, and multi-operator. Each 
Institution obtained approval for the data acquired by the 
respective Ethical Committee or Institutional Review Board. 
The five image datasets were acquired independently from 
each Institution and in different years. No standardization 
was made among the five sets, and each sonographer 
adjusted the scanner settings for each corresponding patient 
during acquisition. All images were discretized at 8 bits (256 
gray levels) and were provided in a digital form. A 
neurosonographer and an expert vascular radiologist 
manually segmented all the images by tracing the LI and 
MA profiles using ImgTracer™ (Global Biomedical 
Technologies, Inc., CA, USA) [10]. The manual 
segmentations were considered as ground truth for the 
system performance evaluation of the computer-generated 
profiles and IMT measurements. The first reader will be 
indicated as Reader-1, the second as Reader-2. We used the 
Wilcoxon signed rank test to assess the difference between 
the average measurement values, and the Fisher’s F-test to 
test the difference of the variances. 

III. RESULTS 
CMUSS and CMUDS both successfully processed the 665 

images of the testing database. This is especially important 
for CMUDS, since it is a completely automated technique. 
Figure 2 shows samples of CMUSS and CMUDS 
segmentation. Both techniques showed accurate LIMA 
tracings despite the different artery anatomy. 

CMUSS showed an average IMT value equal to 
0.747±0.167 mm, whereas the average CMUDS IMT value 
was 0.788±0.288 mm. The average values measured by 
Reader-1 and Reader-2 were 0.758±0.285 mm and 
0.791±0.258 mm, respectively.  

 

TABLE 2 – PERFORMANCE EVALUATION COMPARISONS BETWEEN 
CMUSS (LEFT COLUMN) AND CMUDS (RIGHT COLUMN) 

 CMUSS CMUDS 
IMT bias (mm) w.r.t Reader-1 
IMT bias (mm) w.r.t Reader-2 

-0.011±0.329 
-0.045±0.317 

0.030±0.284 
-0.004±0.273 

IMT abs. err. (mm) w.r.t Reader-1 
IMT abs. err. (mm) w.r.t Reader-2 

0.245±0.219 
0.227±0.226 

0.199±0.205 
0.180±0.205 

FoM (%) w.r.t Reader-1 
FoM (%) w.r.t Reader-2 

98.5% 
94.4% 

96.0% 
99.6% 

 

 Table 2 summarizes the IMT measurement errors and 
absolute error for CMUSS and CMUDS compared to the 
readers. The measurement accuracy was high (i.e., the mean 
value of the IMT bias was low) and the best value was 
shown by CMUDS when compared to Reader-2 (-0.004 mm, 
approximately 0.4% of error on the nominal IMT value of 1 
mm). The lowest accuracy was shown by CMUSS when 
compared to Reader-2 (-0.045 mm, about 4.5% of the 
nominal IMT value). The CMUSS IMT estimates were 
statistically different from those of Reader-1 (p<0.04), but 
not from those of Reader-2 (p>0.4). The CMUDS IMT 
values, instead, were not different from either of the readers’ 
values (p>0.2). The measurement reproducibility was always 
higher (i.e. the standard deviation of the IMT bias was 
lower) for CMUDS (p<2.6 10-4 for Reader-1 and p<1.6 10-4 
for Reader-2). Hence, CMUDS measurements were overall 
more reproducible than CMUSS. 

 The last two rows of Table 2 reports the Figure of Merit 
(FoM) [6], which can be thought of as the percent overall 
agreement between the IMT measurements by the readers 
and the computer measured IMT. CMUSS showed a FoM 
equal to 98.5% compared to Reader-1 and of 94.4% to 
Reader-2. CMUDS demonstrated a FoM of 96.0% compared 
to Reader-1 and 99.6% to Reader-2. Overall, CMUDS 
showed the highest FoM (99.6% against Reader-2) and the 
best average FoM (97.8% against 96.5% of CMUSS).  

Figure 3 reports the Bland-Altmann plots for CMUSS 
(Fig. 3.A and 3.C) and CMUDS (Fig. 3.B and 3.D) with 
respect to the readers’ IMT values.  

IV. DISCUSSION 
In this paper we benchmarked our constrained snake 

model (CMUDS) with the most performing conventional 
snake model (CMUSS) for the far carotid wall segmentation 
and IMT measurement. This system is unique and novel in 
the medical imaging scenario for the following primary 
reasons: (1) Dual Snake System: two deformable parametric 
models (one for the LI and one for the MA) are initialized 
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simultaneously and converge jointly step-by-step; (2) 
Constrained Paradigm: the LI and MA profiles are 
constrained during the evolution process; (3) Automation: 
the entire system, including CCA recognition, ROI 
estimation, snake initialization, snake evolution and 
convergence, is completely automated; (4) External Energy: 
this term utilizes a high-performance edge snapper called 
FOAM [8] compared to conventional gradient 
methodologies.  

Fig. 3 shows that CMUSS has a marked tendency to 
underestimation for higher IMT values, while CMUDS 
showed no bias. Images with high IMT values are relative to 
high-risk patients, which usually have an irregular 
ultrasound representation of the wall due to lipid deposits 
(fig. 4). In such condition, CMUSS profiles could collapse, 
thus producing an underestimation of the actual IMT (fig. 
4.A). In the CMUDS system the LI/MA snakes evolve 
simultaneously and are constrained by each other, preventing 
them from diverging or collapsing (fig 4.B). 

The best performing snake-based algorithms that have 
been published in literature were by Cheng et al. [11] and 
Delsanto et al. [12]. However, the direct comparison of 
CMUSS and CMUDS performance with respect to previous 
snake-based techniques is not straightforward due to the fact 
that (a) different distance metrics were adopted, (b) our 
dataset is multi-institutional with varying pixel density, (c) 
our dataset included both normal and pathological arteries.  

V. CONCLUSIONS 
We benchmarked CMUDS, a dual-snake constrained 

snake system for the carotid wall segmentation and IMT 
measurement against CMUSS, a single snake unconstrained 
system. We showed that the mutual constraint between the 
LI and MA snakes in CMUDS increases the overall system 
performance with greater clinical stability, showing a 
reproducibility that was statistically better than CMUSS. 

CMUDS is fully automated and had 100% success on a large 
dataset of 665 images coming from different clinical centers. 

The potentialities of CMUDS represent a valuable clinical 
asset in large epidemiological studies. 
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Fig. 3. Bland-Altmann plots for CMUSS (left column) and 
CMUDS (right column) compared to the readers’ IMT values. 
The top row (panels A and B) is relative to Reader-1, the 
bottom panels (C and D) to Reader-2. 

 
Fig. 4. Comparison between unconstrained (panel A) and 
constrained CMUDS (panel B). The white arrow indicates a 
region where the LI snake (continuous white line) collapsed on 
the MA (dashed white line) due to lack of external energy. 

487


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

