
 

  
Abstract—In this work, we present a Computer Aided 

Diagnosis (CAD) based technique for automatic classification of 
benign and malignant thyroid lesions in 3D contrast-enhanced 
ultrasound images.  The images were obtained from 20 
patients. Fine needle aspiration biopsy and histology confirmed 
malignancy. Discrete Wavelet Transform (DWT) and texture 
based features were extracted from the thyroid images. The 
resulting feature vectors were used to train and test three 
different classifiers: K-Nearest Neighbor (K-NN), Probabilistic 
Neural Network (PNN), and Decision Tree (DeTr) using ten-
fold cross validation technique. Our results show that 
combination of DWT and texture features in the K-NN 
classifier resulted in a classification accuracy of 98.9%, a 
sensitivity of 98%, and a specificity of 99.8%.  Thus, the 
preliminary results of the proposed technique show that it 
could be adapted as an adjunct tool that can give valuable 
second opinions to the doctors regarding the nature of the 
thyroid nodule. The technique is cost-effective, non-invasive, 
fast, completely automated and gives more objective and 
reproducible results compared to manual analysis of the 
ultrasound images. We however intend to establish the clinical 
applicability of this technique by evaluating it with more data 
in the future.  

Index Terms—Thyroid lesion, Computer Aided Diagnosis, 
Contrast Enhanced Ultrasound, Texture, Discrete Wavelet 
Transform 

I. INTRODUCTION 
hyroid nodules may occur in more than 50% of adult 
population. However, only about 7% of thyroid nodules 

are being diagnosed as malignant [1].  In order to effectively 
detect the small number of malignant nodules from the 
benign ones, there is a need for cost-effective accurate 
thyroid diagnosis support systems. Fine Needle Aspiration 
(FNA) biopsy can considered as the "gold standard" in the 
diagnosis of thyroid nodules [2].  However, FNA is too labor 
intensive to be used for large scale screenings and has 
pitfalls [3].  Computer Aided Diagnosis (CAD) based 
techniques are being developed to more objectively, 
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automatically, quickly, and accurately analyze medical 
images and give valuable second opinions to doctors on the 
interpretations of the images. In this work, we have 
developed one such technique for thyroid nodule 
classification. High-Resolution Ultrasonography (HRUS) is 
cost-effective, commonly available, and is good for 
predicting the risk of malignancy [4]. Contrast-Enhanced 
Ultrasound (CEUS) imaging was introduced to enhance the 
differential diagnosis of solitary thyroid nodules [5].  It was 
found that CEUS enhancement patterns were different in 
benign and malignant lesions [6], and the application of 
ultrasonographic contrast agents led to an improvement in 
the differential diagnosis of thyroid nodules [7]. Due to the 
heavy vasculature of the thyroid gland, the contrast agent 
enhances the parenchyma representation, and presents the 
differences in the micro- and macro-vasculature in benign 
and malignant nodules. Thus, by using CEUS, it is possible 
to gain a better representation of the thyroid vascular pattern 
with a spatial resolution that is better than that of colour and 
power Doppler imaging. Therefore, in this study, we have 
used Discrete Wavelet Transform (DWT) and texture based 
features extracted from the CEUS images for developing the 
classification technique. 

II. MATERIALS AND METHODS 
Fig. 1 shows the block diagram of the proposed real-time 

CAD technique (a class of ThyroScan algorithms). It 
consists of an on-line classification system which predicts 
the class label (benign or malignant) of a test image based on 
the transformation of the on-line grayscale feature vector by 
the training parameters determined by an off-line learning 
system. The off-line classification system produces the 
training parameters using the combination of grayscale off-
line training features and the respective off-line ground truth 
training class labels (0/1 for benign/malignant).  The 
grayscale features for on-line or off-line training are based 
on image texture and Discrete Wavelet Transform (DWT). 
Significant features among the extracted ones are selected 
using the t-test. We evaluated K-Nearest Neighbor (K-NN), 
Probabilistic Neural Network (PNN), and Decision Tree 
(DeTr) classifiers. The above CAD system was developed 
using an image database, where the training set images were 
used to develop the classifiers. The built classifier was 
evaluated using the test set. For evaluation, we used a k-fold 
cross validation protocol.  The predicted class labels of the 
test images and the corresponding ground truth labels (0/1) 
are compared to determine the performance measures of the 
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system such as sensitivity, specificity, accuracy, and Positive 
Predictive Value (PPV). 

 
Fig. 1.  Block diagram of the proposed system; The blocks outside the 

dotted shaded rectangular box represent the flow of off-line training system, 
and the blocks within the dotted box represent the on-line real-time system 

 
A. Image Acquisition 
Twenty patients (10 male and 10 female) with previously 

confirmed diagnosis of solitary thyroid nodule were enrolled 
in this study. All the patients signed an informed consent and 
the study was approved by the ethical committee of the 
“Umberto I’” Hospital of Torino. All subjects underwent a 
clinical examination, hormonal profiling, ultrasound (B-
Mode and Color Doppler) examination, and FNA biopsy. 
Then, 2.5 ml of ultrasound contrast agent (Sonovue, Bracco, 
Italy) was administered intravenously and a 3D volume 
containing the lesion was acquired using MyLab70 
ultrasound scanner (Biosound-Esaote, Genova, Italy) 
equipped by a LA-522 linear probe working in the range 4-
10 MHz. All the images were acquired at 10 MHz. The 
average frame rate of the device was 16 Hz. Among the 20 
nodules, five were benign (goiter nodules) and classified as 
THY2 according to cytological criteria [8]. Among the 
remaining 15 patients classified as THY3, five had benign 
conditions (follicular neoplasm) and ten had malignant 
conditions (seven papillary, one follicular and two Hurtle 
cells carcinoma). We acquired 40 data sets from each 
patient, and thus, we had 400 benign and 400 malignant 
images. The ten patients who were diagnosed with malignant 
nodules underwent thyroidectomy, and the histo-
pathological analysis confirmed the diagnosis. The results of 
the FNAB were used as reference for the benign nodules. 
Fig. 2 and Fig. 3 show the typical malignant and benign 
thyroid images, respectively. The white arrows indicate the 
lesion. The red arrow indicates a portion of healthy 
parenchyma. 

B. Feature Extraction 
 In the CEUS images, it was observed that ring 
enhancement was predominant in benign lesions and 

heterogeneous enhancement was prevalent in malignant 
lesions [6].  These differences manifest as changes in the 
image texture, and hence, we used texture and DWT based 
features in this work.  

 

 
Fig. 2. A) HRUS, B) Color Doppler, C) CEUS images of a papillary 

carcinoma (malignant).  

 
Fig. 3.  A) HRUS, B) Color Doppler, C) CEUS images of a goiter nodule 

(benign).  
DWT Features: DWT uses filter banks to decompose 
signals into low and high pass components, called sub-
bands. The low pass coefficients contain information about 
slow varying characteristics, and the high pass components 
contain information about sudden changes. Low pass 
filtering (LPF) on both rows and columns results in LL 
coefficients which contain most of the image’s total energy.  
LPF on rows and high pass filtering (HPF) on columns 
results in HL coefficients which contain the vertical details 
of the image. HPF on rows and LPF on columns results in 
LH coefficients which contain the horizontal details. Finally 
HPF on rows and columns results in the finest-scale HH 
coefficients that contain the diagonal details. Decomposition 
is further performed on the LL sub-band to attain the next 
coarser scale of wavelet coefficients. Fig. 4 shows the 
complete passband structure for a 2D sub-band transform 
with three levels of decomposition. A2, V2, H2, D2, H1, V1 
and D1 are the energies of LL2, HL2, LH2, HH2, LH1, HL1 
and HH1, respectively. In this work, we used Daubechies 
(Db) 8 as the mother wavelet. We stopped at the 2nd level 
decomposition, because higher level decompositions did not 
yield significant features. All the elements within the 
individual rows of the matrix were added and the elements 
of the resulting vector were squared before adding to form a 
scalar. This scalar was normalized by dividing it by the 
number of rows and columns of the original matrix to obtain 
the energy.   
Texture Features: Texture features measure smoothness, 
coarseness, and regularity of pixels which form an image. In 
this work, we used the features extracted from the Gray 
Level Co-occurrence Matrix (GLCM). GLCM of an M ×  N 
image I is defined by 
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where ,  

and denotes the cardinality of a set. The probability of a 

pixel with a grey level value i having a pixel with a gray 
level value j at a  distance away in an image is 

              (2) 

Using Eqn. (2), we obtained the following features [9]:  

    (3) 

  (4) 

     (5) 

C. Classifiers   
 The K-Nearest Neighbor (K-NN) classifier is based on 
the minimum distance from a query instance to the training 
samples. The K nearest neighbors are determined using this 
method. A test sample is assigned the class that is the most 
common among its K nearest neighbors [10]. Probabilistic 
Neural Network (PNN) classifier is a type of two layer 
radial basis network in which the first layer of neurons has 
radial basis activation functions. This layer computes the 
distance vector by evaluating the distances between the input 
and training vectors. The second layer (competitive layer) 
sums the contributions of each input classes and produces a 
vector of probabilities as the output of the input classes. The 
compete transfer function at the output of the second layer 
selects the maximum of these probabilities and assigns a 1 
for the selected class and a 0 for all other classes [11]. The 
Decision Tree (DeTr) classifier generates a tree and a set of 
rules to represent the model in order to identify different 
classes. The rules are used to predict the class of the test 
sample [12]. 
 

 
Fig. 4.  Passband structure for a 2D sub-band DWT with three levels 

III. RESULTS 

A. Selected Features 
We used Student’s t-test [13] to select the significant 

features. Table I documents the Mean ± Standard Deviation 
(SD) of these significant features for both benign and 

malignant classes. The fact that all p-values are below 
0.0001 indicates that all features are clinically significant. 
The homogeneity, symmetry and all the DWT features are 
higher for malignant nodules compared to benign nodules 
because benign images (Fig. 3) have more structure in their 
sonographic appearance compared to malignant thyroid 
images (Fig. 2). The images with more structure, such as the 
benign thyroid images, have more variations in the greyscale 
values compared to the malignant thyroid images, and 
therefore have higher entropy values.  

 

TABLE I 
VALUES OF THE VARIOUS DWT AND TEXTURE FEATURES FOR THE BENIGN 

AND MALIGNANT THYROID LESIONS 
Feature Asymptomatic Symptomatic p-value 

H 0.285 ±1.742E-02 0.345 ±4.280E-02 < 0.0001 

E 3.78 ±5.402E-02 3.52 ±0.160 < 0.0001 

S 0.851 ±1.355E-02 0.860 ±2.941E-02 < 0.0001 

A2 
1.635E+06 

±6.189E+05 

3.446E+06 

±2.335E+06 
< 0.0001 

H2 4.20 ±2.30 5.12 ±3.06 < 0.0001 

H1 0.362 ±0.237 0.474 ±0.334 < 0.0001 

V2 319 ±124 676 ±665 < 0.0001 

V1 66.1 ±42.6 206 ±214 < 0.0001 

D2 1.07 ±0.626 2.20 ±1.20 < 0.0001 

D1 
2.907E-02 

±6.303E-03 

3.362E-02 ±1.744E-

02 
< 0.0001 

B. Classification Results 
Ten-fold stratified cross validation method was used to 

evaluate these classifiers. In this method, the dataset was 
split into ten parts, each part containing the same proportion 
of images from both classes.  In the first fold, nine parts 
were used for training and the tenth part was used for testing 
and for calculation of the performance measures. This 
protocol was repeated nine more times with a different part 
as the test set. The averages of the performance measures 
(sensitivity, specificity, PPV, and accuracy) obtained during 
the testing phase of each fold are reported as the final 
performance measures for that classifier. Table II presents 
the classification results obtained by using the extracted 
DWT and texture features in the three classifiers. The 
classification accuracy for all three tested classifiers is well 
above 96%. It is also evident from the results that the K-NN 
classifier performs better than DeTr and PNN with a higher 
accuracy of 98.9%. It not only presents the highest accuracy 
but also has equally good sensitivity of 98% and specificity 
of 99.8%.     

IV. DISCUSSION 
HRUS sensitivity and specificity were only 80.8% and 

81.6%, respectively [14]. Color and Power Doppler cannot 
evidence micro vessels which are typical of malignancy [15] 
and also they exhibited poor specificity [16]. Finley et al. 
[17] classified benign and malignant thyroid nodules using 
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molecular profiling and obtained sensitivity and specificity 
of 91.7% and 96.2%, respectively. Patton et al. [18] obtained 
a low accuracy of 77% using fluorescent scanning. Based on 
the above studies, we felt the necessity for a better technique 
that can improve the classification efficiency and that is also 
more economical. In our previous study [19], we applied an 
advanced image processing and modeling technique to the 
CEUS 3D volumes of benign and malignant lesions, and 
quantified the parameters of the intranodal vascularity.  In 
this paper, we developed a CAD classification framework 
for the differential diagnosis of thyroid lesions using 3D 
CEUS images that presents a high accuracy of over 98%. 
We believe that this high value of accuracy is due to the 
choice of the features used in the classifiers. DWT features 
extract the information from the images in both the time and 
frequency domains, and hence, these features capture the 
subtle variations in the characteristics of the benign and 
malignant images. In the case of texture features, the 
homogeneity feature measures the similarity between two 
pixels that are  apart. Denseness and degree of 
disorder in an image are measured by the entropy feature. 
The symmetry projections indicate prominent directions 
within the texture of CEUS images, and therefore, symmetry 
is an important discriminative feature of these images. The 
proposed technique can be programmed into software which 
can be written in a CD and shipped to hospitals or be 
downloaded from the internet at no extra cost. On the 
limitations front, we have evaluated the technique using a 
small dataset. Since only about 7% of the thyroid nodules 
are generally malignant, building a large database of 
malignant nodules requires a big effort. We are currently 
working to enlarge our database. 

 

TABLE II 
CLASSIFICATION RESULTS; A: ACCURACY; SN: SENSITIVITY; SP: 

SPECIFICITY 

Classifier Accuracy 
(%) 

PPV 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

K-NN 98.9 98 99.8 98.9 
PNN 97.8 95.8 99.8 97.8 
DeTr 96.9 94 99.8 96.9 

V. CONCLUSION 
In this work, we investigated a CEUS based thyroid nodule 
classification CAD system that uses texture and DWT 
parameters.  Our results show that the combination of DWT 
and texture features coupled with K-NN classifier presented 
a classification accuracy of 98.9%, sensitivity of 98% and 
99.8% specificity. We believe that our strategy could be a 
step forward in the quantitative and user-independent 
classification of thyroid lesions. Since the cost associated 
with the CEUS examination followed by the use of the 
proposed CAD technique is relatively less than the cost of a 
surgical intervention, this CEUS based classification scheme 
can be considered as cost-effective. Moreover, the high 
accuracy encourages us to validate the system using a larger 
dataset in order to establish its clinical applicability as an 

adjunct tool to assist doctors in thyroid nodule classification 
and subsequent treatment regime.  
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