
 

  
Abstract— In this work, we present a Computer Aided 

Diagnostic (CAD) technique (a class of Atheromatic systems) 
that classifies the automatically segmented carotid far wall 
Intima-Media Thickness (IMT) regions along the common 
carotid artery into symptomatic and asymptomatic classes. We 
extracted texture features based on Local Binary Patterns 
(LBP) and Law’s Texture Energy (LTE) and used the 
significant features to train and test the Support Vector 
Machine classifier. We developed the classifiers using three-
fold stratified cross validation data resampling technique on 
342 IMT wall regions. An accuracy of 89.5% was registered.  
Thus, the proposed technique is accurate, robust, non-invasive, 
fast, objective, and cost-effective, and hence, will add more 
value to the existing carotid plaque diagnostics protocol.  

Index Terms— Atherosclerosis, Symptomatic, 
Asymptomatic, Carotid Far Wall, Local Binary Patterns, 
Laws’ Texture Energy, Wall Variability, Classifiers. 

 

I. INTRODUCTION 
arotid atherosclerosis results in carotid stenosis which 
has been found to cause ischemic strokes. Stroke risk 

can be reduced by removing the plaque by Carotid 
Endarterectomy (CEA)) or by using Carotid Artery Stenting 
(CAS). However, both these procedures carry risks [1], and 
hence, it is advisable to offer them to only symptomatic 
patients who carry more risk of rupture that result in 
dangerous embolization [2]. Currently, selection of patients 
to be considered for endarterectomy is based on the previous 
history of occurrence of clinical symptoms such as stroke, 
Transient Ischaemic Attack (TIA), Amaurosis Fugax (AF) 
and the degree of stenosis caused by the plaque [3]. 
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However, it has been observed that plaques with relatively 
low stenosis degree may produce symptoms [4] and the 
majority of asymptomatic patients with highly stenotic 
plaques may remain asymptomatic [5]. Therefore, there is a 
need to identify more features that characterize and classify 
plaques belonging to symptomatic and asymptomatic 
groups.  In this work, we have proposed a novel data 
mining framework that extracts texture features such as 
Local Binary Pattern (LBP) and Laws’ Texture Energy 
(LTE) from carotid far walls referred to as the Intima-Media 
Thickness (IMT) regions in carotid ultrasound images. 
Several studies have indicated that progressive 
atherosclerotic lesions begin with a pathological thickening 
of the intimal wall region [6,7]. Therefore, to detect 
symptomatic cases when the plaque is at its very early stage, 
we have attempted to extract the IMT wall region for feature 
extraction. 
 Fig. 1 depicts the general block diagram of the proposed 
Atheromatic technique. In Fig. 1, all the blocks outside the 
shaded rectangular box represent the flow of the off-line 
training procedure, and the blocks inside the shaded box 
indicate the on-line real-time system. In the off-line training 
system, first we pre-process the training images, and then 
automatically segment the far wall IMT Region of Interest 
(ROI) along with its IMT variability (IMTV). The texture 
features are then extracted from this ROI. Significant 
features are selected using the Student’s t-test. The 
significant features and the ground truth (original 
classification by the physicians as to whether the given ROI 
is symptomatic or asymptomatic) are used to train the 
classifier in order to obtain the training parameters. These 
features and the training parameters are used by the classifier 
to determine the class of the plaque, and subsequently, the 
output classification labels are used to determine the 
performance measures like accuracy, sensitivity, specificity, 
and Positive Predictive Value (PPV). 

II. MATERIALS AND METHODS 
A. Ultrasound Image Acquisition and Pre-processing 

We procured two datasets, one from Hong Kong, and one 
from Italy. In the Hong Kong dataset, all the patients had no 
symptoms prior to the ultrasound examination, and hence, 
the acquired images were considered asymptomatic. The 50 
studied subjects were part of the cohort of a longitudinal 
study conducted at the Department of Imaging and 
Interventional Radiology, The Chinese University of Hong 
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Kong. The carotid arteries were examined using a 13-5 MHz 
linear transducer of Sonoline Antares ultrasound scanner. 
Both distal common carotid arteries of each subject were 
imaged from three multiple views using three different 
approaches: anterior, anterolateral and posterolateral with 
simultaneous ECG gating. Thus, six images were acquired 
from each patient, three from the left carotid artery and three 
from the right to create a database of 300 asymptomatic 
carotid wall images. 

 
Fig. 1.  Block diagram of the proposed system; The blocks outside the 

dotted shaded rectangular box represent the flow of off-line training system, 
and the blocks within the dotted box represent the on-line real-time system 

To get the Italy dataset, a total of 21 in-patients were 
retrospectively studied using Color Duplex Ultrasound 
Scanning (CDUS) at the Department of Radiology, A.O.U. 
di Cagliari, Italy. CDUS was done using Esaote MyLab™ 
70 modality with a 10 MHz linear-array transducer. The 
patient’s head was tilted to image the carotid artery that was 
just proximal to the bulb placed horizontally across the 
screen [8]. Among the 21 patients, 11 were symptomatic and 
10 were asymptomatic. Two images, one from the left 
carotid and one from the right carotid, were obtained from 
each patient. Therefore, from the 10 asymptomatic cases, we 
obtained 20 asymptomatic images. In the 11 symptomatic 
cases,  we considered the carotid ipsilateral to the symptom 
as symptomatic i.e. if the stroke was on the right side, the 
right carotid was considered symptomatic and the left 
asymptomatic. Thus, from these 11 cases, we obtained 11 
symptomatic and 11 asymptomatic images. Therefore, there 
were 20+11=31 asymptomatic carotids and 11 symptomatic 
carotids. Overall, from both the wall datasets, we had 331 
asymptomatic and 11 symptomatic images. 

 
B. ROI Segmentation  

 In the ultrasound image, we automatically segmented the 
region between the Lumen-Intima (LI) and Media-
Adventitia (MA) interfaces of the Common Carotid Artery 
(CCA) and called it the IMT region. Since manual 
measurement of IMT is time consuming, subjective, and 

tedious, several CAD tools (in the class of AtheroEdge™ 
class of systems) that are either fully or partially automated 
have been developed [9]. In these algorithms, IMT is 
calculated automatically using two key steps: (1) 
Recognition of the CCA, and tracing of the Near Adventitia 
(ADN) and Far Adventitia (ADF) layers. (2) Determination of 
the LI and MA borders, and calculation of IMT and IMT 
wall region. Under the class of AtheroEdge™, Global 
Biomedical Technologies Inc. has developed different 
patented paradigms of automatic IMT measurement and far 
wall segmentation systems. In this work, we used CAMES 
(Completely Automated Multi-resolution Edge Snapper) 
algorithm which is a fully automated algorithm for CCA 
recognition and subsequent LIMA segmentation [10]. This 
algorithm utilizes the morphological properties of the CCA 
to determine the IMT. Fig. 2 (WA1) and (WS1) show the 
symptomatic and asymptomatic wall images.  Fig. 2 
(WRA1) and (WRS1) show the respective far wall regions. 

 
Fig. 2.  Carotid Asymptomatic Wall Image (WA1); Symptomatic Wall 

Image (WS1). Corresponding Extracted Wall Regions WRA1 and WRS1 

C. Feature Extraction 
 In the IMT wall region, we determined features such as 
LBP and LTE, and also calculated the wall variability by 
studying the deviations of the mean IMT along the carotid 
far wall.  

Local Binary Pattern (LBP): The LBP feature vector is 
determined as follows [11]: A circular neighborhood is 
considered around a pixel. P points are chosen on the 
circumference of the circle with radius R such that they are 
all equidistant from the center pixel. Let gc be the gray value 
of the centre pixel and gp, p=0,…, P-1, corresponds to the 
gray values of the P points. These P points are converted 
into a circular bit-stream of 0’s and 1’s according to whether 
the gray value of the pixel is less than or greater than the 
gray value of the center pixel. Let U be the number of spatial 
bitwise 0/1 transitions. In this work, a rotation invariant 
measure called LBPP,R was calculated. Only patterns with U 
≤ 2 were assigned the LBP code as follows:  

      (1) 

where,  
 Multi-scale analysis using LBP is done by choosing 
circles with various radii around the centre pixels and 
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constructing separate LBP image for each scale. In our work, 
energy and entropy of the LBP image, constructed over 
different scales (R=1, 2, and 3 with the corresponding pixel 
count P being 8, 16, and 24, respectively) were used as 
feature descriptors. 

Laws Texture Energy (LTE):  Laws used masks of 
appropriate sizes for discriminating between different kinds 
of texture [12]. In this work, all the masks were derived from 
one-dimensional (1D) vectors: L3: [1, 2, 1], E3: [−1, 0, 1], 
and S3: [−1, 2, − 1] that describe the following features: 
level, edge, and spot, respectively. By convoluting any 
vertical 1D vector with a horizontal one, nine 2D masks of 
size 3 × 3, namely, L3L3, L3E3, L3S3, E3E3, E3L3, E3S3, 
S3S3, S3L3, S3E3 were generated. Among these nine masks, 
we used eight zero-sum masks numbered 1 to 8. To extract 
texture information, the image was first convoluted with 
each 2D mask to obtain the corresponding texture image (eg. 
TIE3E3). According to Laws, all the 2D masks, except L3L3 
had zero mean. Hence, texture image TIL3L3 was used to 
normalize the contrast of all other texture images TI (i,j). 
The outputs (TI) were passed to “texture energy 
measurements” filters. These consisted of a moving non-
linear window average of absolute values. Thus, in this 
work, the image under inspection was filtered using these 
eight masks, and their energies were computed and used as 
feature descriptors [13].  

Wall IMT Variability as a Feature: In order to calculate 
the distance between LI and MA borders, which represents 
the IMT, the Polyline Distance Measure (PDM) was used in 
this work. PDM measures the distance of each vertex of one 
boundary to the segments of the second boundary. A recent 
study [14] shows that the wall variability may be associated 
with atherosclerosis. In this work, we have quantified wall 
variability by a novel feature called the IMTVpoly which is the 
standard deviation of the IMT.  

D. K-Nearest Neighbor (KNN)    
 K-Nearest Neighbor (KNN) classifier is a simple classifier 
in which a feature vector is assigned the class that is the 
most common among its K nearest neighbors [15]. K is 
typically a small positive integer.  

III. RESULTS 

A. Selected Features 
We used t-test [16] to verify if the features are significant 

enough to be able to accurately discriminate the 
symptomatic and asymptomatic classes.  Table 1 presents 
the Mean ± Standard Deviation (SD) of the significant 
features. A p-value of less than 0.0001 indicates that the 
features are significant. LBP324Ene has registered a 
significantly higher value for the asymptomatic images 
compared to symptomatic images. It is also evident that 
LTE2Ene is more powerful than LTE8Ene as the difference in 
the LTE2Ene values for both the classes is higher than that 
for LTE8Ene. This is because the mask 2 used to calculate 

LTE2Ene captures more information about the level, edges, 
and spots in the image than those captured by the mask 8 
used to obtain LTE8Ene. The IMTVpoly feature has a higher 
value for the symptomatic images than for the asymptomatic 
images. This indicates that the wall variability is higher in 
the case of symptomatic images.  

 
TABLE I 

SIGNIFICANT FEATURES THAT HAD A P-VALUE < 0.0001 AND THEIR RANGES 
(MEAN±SD) FOR SYMPTOMATIC AND ASYMPTOMATIC CLASSES 

Feature Asymptomatic Symptomatic p-
value 

LBP(R=3,P=24)Energy 
(LBP324Ene) 0.3096±0.1272 0.9137 

±0.1957 0.0000 

Laws Texture Energy 2 
(LTE2Ene) 

4.8117e+006 
±3.7818e+006 

3.1159e+007 
±1.6741e+007 0.0000 

Laws Texture Energy 8 
(LTE8Ene) 

2.3464e+006 
±2.3664e+006 

1.9635e+007 
±1.3902e+007 0.0000 

IMTVpoly 0.484 ±0.191 0.104± 
8.298E-02 0.0000 

B. Atheromatic Classification Results 
Three-fold stratified cross validation method was used to 

evaluate these classifiers. In this method, the dataset was 
split into three parts, each part containing the same 
proportion of images from both classes.  In the first fold, two 
parts were used for training and the third part was used for 
testing and for calculation of the performance measures. 
This protocol was repeated two more times with a different 
part as the test set. The averages of the performance 
measures (sensitivity, specificity, PPV, and accuracy) 
obtained during the testing phase of each fold are reported as 
the final performance measures. On excluding IMTVpoly, the 
accuracy registered by the KNN classifier was only 88.6%. 
The sensitivity, specificity, and PPV were 89.6%, 55.6%, 
and 98.7% respectively. Once IMTVpoly was included, an 
improved accuracy of 89.5% was registered. The sensitivity, 
specificity, and PPV were also higher: 89.6%, 88.9%, and 
99.7%, respectively. 

IV. DISCUSSION 
A study of the literature reveals that there are only a few 

CAD algorithms for plaque classification. A comprehensive 
review of most of these studies can be found in [17]. All 
these studies [18-20] are based on plaque classification. In 
this work, however, our objective was to developed an 
Atheromatic system - a data mining framework to detect 
symptomatic cases when the plaque is at its very early stage. 
Therefore, we extracted texture features from the 
automatically segmented IMT wall region and used them for 
classification. In the evaluated dataset, the number of 
symptomatic images was considerably less than the number 
of asymptomatic images. i.e., only 3% of the dataset had 
symptomatic images. However, a high accuracy of nearly 
90% was achieved in classifying this dataset. Such a 
classification is only possible because of the highly 
discriminating features including the novel wall variability 
feature IMTVpoly. The powerful capability of the IMTVpoly 
feature was also demonstrated by the significant increase in 
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the specificity obtained when this feature was included for 
classification. The use of a reasonably large dataset and the 
stratified cross validation technique ensure that the training 
parameters are generalized to accurately and reliably classify 
new images. The technique is low cost for the following 
reasons: (a) use of a small feature set, which reduces 
computational cost, (b) incorporation of the algorithms and 
indices into existing clinical analysis software at no cost, and 
(c) use of commonly available ultrasound images.  
Moreover, all the steps, namely the carotid artery 
segmentation, measurement of the LI and MA borders, 
measurement of IMT and IMT wall variability (IMTVpoly), 
grayscale feature extraction and selection, and classification, 
are completely automated, and hence, the technique is highly 
objective.  

We believe that there is a scope of improving the 
efficiency by adding more features which can represent 
atherosclerotic deposits in wall region. We also plan to 
evaluate the proposed techniques using a larger dataset. A 
drawback of the ground truth determination based on 
presence or absence of symptoms is that some of the 
asymptomatic plaques might have been wrongly labelled as 
symptomatic when the symptoms might have occurred due 
to plaque in heart and not in the carotid artery. Also, patients 
who do not recollect their history of symptoms may be 
classified as asymptomatic. To alleviate this problem, in 
future, we intend to determine the ground truth from 
pathological studies on the plaque instead of from the 
clinical report on the patient’s symptoms. 

V. CONCLUSION 
In this work, we have presented a CAD tool (called 
Atheromatic system) for carotid far wall region 
characterization and classification into symptomatic and 
asymptomatic classes in an attempt to detect early changes 
in the wall region. Using three significant texture features 
based on Local Binary Patterns (LBP) and Law’s Texture 
Energy (LTE) paradigms and the IMT wall variability 
feature in a KNN classifier, we obtained a high accuracy of 
89.5%. The system is completely automated, cost-effective, 
and can be used as an adjunct technique for real-time carotid 
wall region analysis.  In the future, we intend to evaluate the 
technique using large datasets collected in multi-centre trials 
and improve the accuracy by using other features.  
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