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Abstract— A promising approach to prostate cancer diagnosis
is multi-parametric MRI. One of the key modalities used in
multi-parametric MRI is diffusion weighted MRI. Using mul-
tiple diffusion weighted MR acquisitions taken with different
magnetic gradient strengths, the apparent diffusion coefficient
(ADC) is calculated and can be used to identify tumors in the
prostate. Current algorithms used to calculate ADC assume
a parametric measurement model, but this assumption is not
true due to the presence of additional phenomena during
the acquisition process. A novel Non-parametric Estimated
ADC (NEstA) algorithm is proposed which uses a Monte
Carlo strategy to learn the inherent measurement distribution
model based on the underlying statistical behavior of the
DWI measurements to estimate the ADC values. The proposed
algorithm is compared to the results of the commonly used least-
squares (LS) estimation algorithm for computing ADC values.
Nine test patient cases with visible tumors in the prostate gland
were processed using both algorithms and compared visually.
It was found that NEstA produced ADC data with reduced
artifacts while preserving structure. Quantitatively, Fisher’s
criterion measuring the separability of the healthy prostate
and tumor tissues was computed for the nine patient cases,
comparing the NEstA and LS methods. It was found that
Fisher’s criterion increased with the NEstA method, meaning
the separation of classes was more pronounced.

I. INTRODUCTION

Prostate cancer is the second most common type of cancer
in males, with 913,000 new diagnoses globally in 2008 [1]. It
is also the sixth leading cause of death from cancer in males,
with an estimated 258,000 deaths globally that same year
[1]. If the cancer is detected early, the prognosis is excellent
with a relative 5-year survival rate of 100% for cancer in
the local stage [2]. This due not only to better treatments
available, but also from better tests than can detect cancer
earlier. One common test looks for an increased presence of
prostate-specific antigen (PSA) in blood serum tests, which
can indicate cancer in the prostate [3]. However, PSA tests
can also indicate benign prostatic disease. Instead, a positive
PSA test suggests that additional tests should be used to
image the prostate and detect cancer.

Ultrasound is commonly used to image tumors in the
prostate [4]. In conventional ultrasound techniques, the can-
cer should appear as a hypoechoic lesion. However, in many
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cases, the cancer is isoechoic and is not visible using ultra-
sound. Furthermore, prostatitis and benign prostatic hyper-
plasia can also appear as a hypoechoic lesion in ultrasound
images, making it difficult to identify the prostate cancer.

Magnetic resonance imaging (MRI) is an alternative to
ultrasound for imaging the prostate. In particular, multi-
parametric MRI, which makes use of MRI modalities such
as T2-weighted and diffusion-weighted MRI, has been used
to locate prostate cancer [5], [6]. T2-weighted images de-
tect the anatomical structures of the prostate. Diffusion-
weighted MRI images (DWI) can detect prostate cancer
from differences in the diffusion of water molecules of the
normal and tumor tissues. A diffusion gradient is applied
to measure the diffusion characteristics of the tissue and this
gradient is quantified as the b-value. A particularly important
parameter derived from diffusion-weighted MRI is the appar-
ent diffusion coefficient (ADC), which is computed based
on DWI acquisitions at different b-values [5]. The ADC
value associated with each imaged tissue is the parameter
of interest used to locate the cancer.

The ADC value associated with a specific tissue type is
estimated from a set of diffusion-weighted images (DWI)
and with different b-values. The relationship between these
parameters is given in Eq. 1, where A is the ADC value, bi
is the b-value associated with signal intensity Si, and Sα is
the reference signal intensity associated with bα.

Si = Sαe
−(bi−bα)A (1)

In practice, DWI measurements S are taken using different
b-values, which allows for a more robust estimation of the
ADC value. Previous estimation approaches rely exclusively
on fixed, parametric measurement distribution models for the
DWI measurements when estimating the ADC to account
for measurement deviations (e.g., Rician measurement dis-
tribution model). Such approaches include the most common
and widely used least squares (LS) estimation algorithm and
parametric maximum likelihood approaches [7]. However,
they do not perform well in situations where the fixed
measurement distribution models employed may not fit well
with the underlying DWI measurements, such as in the
presence of additional phenomena during the acquisition
process that is unaccounted for by the parametric models.
Furthermore, the use of such models increase the complexity
for fitting the signal decay model for DWI.

More recent approaches include minimizing total variation
of ADC values, proposed by Chen et al [8]. While this
approach produces low ADC variance inside the prostate
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and tumor, it results in piece-wise smooth images with a
noticeable loss in detail. Walker-Samuel, Orton, Boult and
Robinson propose a Bayesian Adaptive Smoothing (BAS)
based approach [9]. They propose using a Markov Chain
Monte Carlo algorithm to learn parameters to a fixed para-
metric Bayesian Adaptive Smoothing model. A limitation to
this approach is that a specific parametric model must be as-
sumed, which is less adaptive to the underlying probabilistic
behavior of the DWI measurements. Furthermore, due to the
number of iterations required to learn the parameters, the
algorithm runtime can be large.

In this paper, a Non-parametric Estimated ADC (NEstA)
strategy is proposed to determine the ADC values. The
strategy employs a Monte Carlo strategy to learn the inher-
ent measurement distribution model directly based on the
underlying statistical behavior of the DWI measurements.
This allows the NEstA strategy to account for the proba-
bilistic behavior of the DWI measurements in an adaptive
and dynamic manner, hence resulting in more robust ADC
estimation process while at the same time allowing for
simpler assumptions to be made when fitting to the signal
decay model for DWI.

The rest of the paper is organized as follows: in Section II,
the methodologies of the proposed algorithm are presented.
In Section III, quantitative and qualitative results are pre-
sented that demonstrate the performance of the proposed
algorithm and compare it to existing algorithms. Finally,
conclusions are given in Section IV.

II. METHODOLOGY

The proposed method approaches ADC estimation as the
Bayesian estimation problem,

Â = argmax
A

P (E(S|M)|A). (2)

Here, M is the collection of DWI measurements, S is the
collection of true DWI signals, A is the ADC, E(S|M) is
the conditional mean of S given M , and P (·|A) is the con-
ditional probability given A. By assuming the measurements
comprising M are statistically independent, the probability
in Eq. 2 can be expressed as

P (E(S|M)|A) =
∏
i

P (Ei(S|M)|A). (3)

Since we can only observe S through our measurements,
M , it is in M that random noise, as well as other unknown
processes, which we will characterize collectively as η, are
introduced. These contaminations of the signal are modeled
as

M = S + η. (4)

Given Eq. 4, the conditional mean E(S|M) can be ex-
pressed as

E(S|M) =

∫
S p(S|M) dS , (5)

where p(S|M) is the posterior distribution of S given M .
Most other approaches use a parametric model in order
to estimate p(S|M). However, parametric models do not

TABLE I: Summary of patients with DWI taken with 3 b-
values {0, 100, 1000 s/mm2}.

Age DFOV (cm2) Resolution (mm3) TE (ms) TR (ms)
1 57 24× 24 1.36× 1.36× 4 67 3336
2 56 24× 24 1.36× 1.36× 4 67 3336
3 76 24× 24 1.36× 1.36× 4 67 4876

TABLE II: Summary of patients with DWI taken with 4 b-
values {0, 100, 400, 1000 s/mm2}.

Age DFOV (cm2) Resolution (mm3) TE (ms) TR (ms)
4 61 24× 24 1.66× 1.66× 3 61 6153
5 76 20× 20 1.56× 1.56× 3 61 6178
6 58 24× 24 1.66× 1.66× 3 61 6153

work well when the signal contaminations do not fit the
model assumptions. In order to better model a general
unknown process η, we propose a non-parametric approach
which learns the posterior directly from the data. We have
implemented a Monte Carlo method for its ability to directly
learn the underlying posterior in an adaptive, non-parametric
manner [10].

Finally, since the arbitrary unknown processes η have been
accounted for with E(S|M), we can assume that

P (·|A) iid∼ N (Sαe
−(bi−bα)A, σ2) (6)

in order to account for estimation error. For the purposes of
our implementation, the number of samples used to estimate
a single value in the ADC estimate is on the order of 100×m,
where m is the number of b-values used to estimate the ADC.
For the datasets in Table I, on the order of 300 samples were
used per ADC value, for those in Table II, on the order of
400 samples were used per ADC value, and for those in
Table III, on the order of 700 samples were used per ADC
value.

III. EXPERIMENTAL RESULTS

The experimental results comparing the proposed ADC
estimation algorithm to using the widely used least squares
(LS) algorithm to estimate the ADC values. Nine different
patient cases with visible tumors in the prostate gland were
used. Three of the patients had diffusion-weighted imaging
performed using three different b-values, three of the patients
had imaging performed for seven different b-values, and
three patients had imaging performed for four different b-
values. All MRI acquisitions were obtained using a Philips
Achieva 3.0T machine at Sunnybrook Health Sciences Cen-
tre, Toronto, Canada. Information about the patient cases
used is summarized in Tables I, II, and III, including Dis-
played Field of View (DFOV), echo time (TE), and repetition
time (TR). The NEstA algorithm was performed within
the ProCanVAS (Prostate Cancer Visual Analysis System)
platform developed at the University of Waterloo Vision and
Image Processing research group.
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TABLE III: Summary of patients with DWI taken with 7
b-values {0, 10, 20, 50, 75, 100, 1000 s/mm2}.

Age DFOV (cm2) Resolution (mm3) TE (ms) TR (ms)
7 78 24× 24 1.66× 1.66× 3.5 61 4890
8 66 24× 24 1.66× 1.66× 3.5 61 4118
9 76 24× 24 1.66× 1.66× 3.5 61 4890

(a) LS (b) NEstA

(c) LS (d) NEstA

(e) LS (f) NEstA

Fig. 1: Example ADC slices of prostates containing tumors
derived from 3-b data.

A. Visual Comparison Results

The NEstA approach achieves better homogeneity, both
in the prostate region as well as in tumors, as shown in
Figs. 1, 2, and 3; however, local structure is preserved. These
figures also demonstrate better separation of the prostate
from surrounding tissues, which will facilitate automatic
prostate segmentation. We also observe from Fig. 4 that the
contrast between the prostate and the tumor is improved by
using the NEstA method. Furthermore, all figures demon-
strate reduced artifacts.

B. Fisher’s Criterion Results

For quantitative evaluation of the NEstA algorithm for the
purpose of computerized cancer analysis, Fishers criterion
was chosen for comparing separability of cancerous tissue
from healthy tissue. Fisher’s criterion is a measure of class
separability, defined as

J(A) =
|m1 −m2|2

s21 + s22
, (7)

in the one-dimensional case, where m1 and m2 are the class
means, and s21 and s22 are the class sample variances. A higher
value of J(A) indicates that the two classes (in this case,

(a) LS (b) NEstA

(c) LS (d) NEstA

(e) LS (f) NEstA

Fig. 2: Example ADC slices of prostates containing tumors
derived from 4-b data.

(a) LS (b) NEstA

(c) LS (d) NEstA

(e) LS (f) NEstA

Fig. 3: Example ADC slices of prostates containing tumors
derived from 7-b data.
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(a) LS (b) NEstA

Fig. 4: Full-size comparison of LS and NEstA estimations showing improved contrast between prostate and surrounding
tissue in (b).

TABLE IV: Fisher’s criterion for separability of cancerous
and healthy tissues.

Patient # LS NEstA % improvement
1 5.168 5.614 8.63
2 5.939 6.310 6.26
3 2.714 3.051 12.41
4 1.215 1.294 6.56
5 1.566 1.655 5.72
6 2.385 2.652 11.19
7 2.214 2.311 4.41
8 3.439 3.561 3.53
9 2.997 3.358 12.05

cancerous tissue vs. healthy tissue) are more easily separable
[11].

Table IV compares prostate/tumor separability using
Fisher’s criterion for ADC estimates prepared using a least
squares (LS) estimation method vs. the NEstA approach.
These experimental results indicate that cancerous tissue is
better separated from healthy tissue in all cases, with an
average improvement over LS of 7.86%. Improved separa-
bility translates directly into better performance of classifiers
designed to detect prostate cancer using ADC.

IV. CONCLUSIONS

A Non-parametric Estimated ADC (NEstA) strategy was
presented for the estimation of ADC from DWI data. It
departs from previous methods which use parametric tech-
niques in that the NEstA strategy accounts for random phe-
nomena in a direct non-parametric manner when estimating
the ADC based on the probabilistic behavior of the underly-
ing DWI data. The NEstA method is advantageous for its
ability to adapt to unknown sources of error by learning
the posterior directly from the data. Experimental results
confirm that the separability of cancerous tissue from healthy
prostate tissue, measured using Fisher’s criterion, improved.

Further improvements to the NEstA method presented herein
are anticipated to improve the method such that it offers a
better ADC estimate for the purpose of developing a very
high b-value computed DWI system, which has the potential
to greatly improve the identification and segmentation of
cancerous tissue.
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