
  

 

Abstract— In this paper, we explores a rapid imaging method 

based on a proposed random-like trajectory for compressed 

sensing (CS) which requires the sampling trajectory should 

satisfy the Restricted Isometry Property (RIP) condition.  In the 

existing CS literature, the attentions are on randomly sampling 

points on the conventional trajectories. However, the proposed 

trajectory is a random-like trajectory generated based on the 

High Order Chirp (HOC) sequences, which use the Traveling 

Salesman Problem (TSP) solver to choose a “short” trajectory 

and design a time optimal gradient waveforms to satisfy the 

gradient amplitude and slew rate limitation. The MR physical 

feasibility of the proposed method is verified by the Bloch 

simulation, and the simulations show that the proposed method 

can reduce artifacts than conventional Spiral trajectory under 

the CS framework. 

I. INTRODUCTION 

Recently, compressed sensing (CS) [1,2] has been 
studied as an alternative sampling theory in many clinic 
applications and successfully applied to accelerate 
conventional magnetic resonance imaging (MRI) [3,4]. This 
theory allows sparse or compressible signals to be sampled at 
a rate that is close to their intrinsic information rate and well 
below their Nyquist rate, and still allows the signal to be 
recovered exactly from randomly under-sampled frequency 
measurements by a non-linear procedure. The sampling 
trajectories, such as, Radial and Spiral, can directly be 
reconstructed by the CS framework [5,6]. Some researches 
[5-8] found that it can improve reconstructions to add 
random perturbed factors into the conventional sampling 
trajectories. Their results show that using randomly 
perturbed k-space trajectories enables more sparsely sampled 
image reconstruction with higher quality and fewer artifacts 
compared to using non-randomly sampled trajectories in CS 
MRI. 

Theoretically, the CS framework requires more randomly 
sampling in frequency domain to satisfy the RIP condition 
[1]. However, random sampling in frequency domain is 
impractical for MRI hardware. Therefore, random sampling 
trajectories are studied to reconstruct better using the CS 
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framework. A. Curtis et al. [9] have researched random 
volumetric MRI trajectories for CG-SENSE reconstruction, 
but he mentioned that it could be recovered by CS. Their 
simulations show the random volumetric trajectories can get 
good detail and acceptable noise for large-volume imaging 
with 32 coils. M. Seeger et al. [10] tried to optimize MRI 
trajectories by Bayesian experimental design. Their results 
show that it can improve the recon results through optimizing 
the existing trajectories. R. Willett et. al. [11] made the 
proposed trajectories to satisfy the RIP condition [1]. Their 
proposed trajectories approximate to the space-filling Hilbert 
curve, but they possibly have very long path-lengths. 

To directly use the CS framework to recover, we propose 
a rapid imaging scheme which can generate a random-like 
trajectory that obeys the RIP condition [1]. Firstly, the 
random-like trajectory is created based on the High Order 
Chirp (HOC) sequences [12]. Secondly, the Traveling 
Salesman Problem (TSP) solver is used to choose a “short” 
trajectory. Here, we use the Simulated Annealing (SA) 
algorithm [13, 14] as the TSP solver. Thirdly, we use a fast 
algorithm for designing a time optimal gradient waveforms 
to mainly satisfy the gradient amplitude and slew rate 
limitation [15]. Fourthly, Non-uniform Fast Fourier 
Transformation (NUFFT) [16] and Nonlinear Conjugate 
Gradient (NCG) are used to reconstruct under the CS 
framework. The MR physical feasibility of the proposed 
random-like trajectory is verified by the Bloch simulation, 
and the simulations show the proposed method can reduce 
artifacts than conventional Spiral under the CS framework. 

II. BACKGROUND 

A. Compressed Sensing (CS) 

In conventional MRI, the CS application is made 
possible by the facts [3] that (1) most MR images are 
compressible by certain transforms and (2) the desired image 
is Fourier encoded in the measurement (so called k-space) 
which allows incoherent sampling. If image f is given by [3], 
the image is recovered by solving a constrained convex 
minimization problem, 

          
2

1 22 1
arg min{ TV( )}  

f

b F f Wf fu              (1)          

where b is the measured k-space data; uF  is the random 

subset of the rows of the Fourier encoding matrix; W is the 

sparsifying transform matrix, such as wavelet, DCT, etc.; 

TV( )  expresses total variation; 
1  and 

2  are constant 

regularization parameters. 

B. High Order Chirp (HOC) Sequence 

The High Order Chirp (HOC) sequences are mentioned 
by V. Saligrama in Ref. [12], who proposes a family of 
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discrete sequences have the special “random-like” uniformly 
decaying auto-correlation properties. His results show a type 
of High-Order-Chirps (HOC) sequences satisfied RIP 
property under some conditions, and he proves the spatial 
deterministic signals can be recovered by the CS theory. For 
example, one of HOC sequences can mathematically be 
expressed as [12], 

32( ) i pu p e   .                             (2) 

Here, p are the sampling points;  is the irrational 

coefficient, such as, golden ratio, , e , etc.. 

C. Traveling Salesman Problem (TSP) 

Traveling Salesman Problem (TSP) is the problem of a 
salesperson trying to visit N cities with as little time on the 
road as possible. As a touchstone for many general 
heuristics, the TSP is concerned with find the “shortest” path 
connecting N points, so this is known to be an NP-Hard 

problem, the exact solutions require  !O N  computation 

time [11]. But, the approximate solutions can be computed 
much more rapidly by some algorithms , such as, genetic 
algorithms (GA) [17], simulated annealing (SA) 
[13,14], Tabu search [18], ant colony optimization (ACO) 
[19], etc., who are theoretically a little longer than the 
shortest possible length with high probability. Here, we 
suppose the sampling points on the proposed trajectory are 
the cities of the TSP, and use the SA algorithm [13, 14] as 
the TSP solver, whose complexity computation is well 

known as  2O N . These approximate solutions would 

certainly satisfy the RIP condition and ensure the success of 
sparse recovery algorithms [11]. 

III. PROPOSED METHOD 

The proposed method has total four steps: firstly, the 
random-like trajectory is generated; secondly, an 
approximation “short” trajectory is solved; thirdly, the time 
optimal gradient waveforms are designed; fourthly, final 
image results are recovered under the CS framework. 
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Fig.1 the proposed random-like trajectory smoothed from HOC sequences. 

A.  Random-Like Trajectory 

The conventional Spiral trajectory that is expressed as, 

2( ) i pu p s e      .                             (3) 

Based on Eq. (2) and (3), we explore a type of random-like 
trajectory is, 

2( )
mi pu p s e      .                             (4) 

where,  is the decay coefficient; m is larger than 2. For 

example，if  1 5 2   , 1/1000  , 3m  and 

p increases from 0 to 1000, the proposed random-like 

trajectory is illustrated as seen as the Figure 1. But, this 
trajectory cannot satisfy the maximum gradient and slew rate 
limitations, to be implemented by the pulse sequences on 
MRI scanners. 

B. Simulated Annealing Algorithm 

In the SA method [13, 14], each points of the search 
space is analogous to a temperature state of a thermo-
dynamics system, and the function to be minimized is 
analogous to the internal energy of the thermodynamics 
system in that temperature state. To incorporate temperature 
parameters into the minimization procedure, explore the 
parameter space at the high temperature and restrict 
exploration at lower temperatures. The goal is to bring the 
thermodynamics system, from an arbitrary initial temperature 
state, to a temperature state with the minimum possible 
energy. Although, the SA algorithm cannot get the optimal 
solution for the TSP, but it can fast compute an 
approximation solution. To short the path length of the 
proposed trajectory, the SA algorithm is applied to minimize 
the total arc length between the sampling points. Actually, 
the SA algorithm rearranges the order of the sampling points 
on the random-like trajectory. 

C. Time Optimal Gradient Waveforms 

An algorithm based on optimal control theory [15] is 
applied to compute the time-optimal gradient waveform of 
the paths optimized by the SA algorithm. Here, we design a 
gradient waveform as a function of time equivalent to a time 

parameterization function of time  p s t  in the arc-length 

parameterization, such that, 

   0 0,s s T L   

where L  is the length of the path; T is the traversal time. 
The time trajectory in k-space is given by the composite 

function     u p u s t . The time optimized problem 

can be formulated in the arc-length parameterization as, 

 
arg min

s t
T                   (5) 
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where  is the gyro-magnetic ratio;  s t is the variable, 

which is a time function;
 

is the 1-order time derivative 

of  s t ; is the 2-order time derivative of  s t ;
maxG  

is the maximum gradient of the system ; 
maxS is the 

maximum slew rate of the system;   s t is the 

magnitude of the acceleration is the curvature of the curve 

  u s t . If we know the time optimal solution  s t
of 

problem (5), we can find the time gradient waveform 
solution is, 

 
  

1
du s t

g t
dt





   .             (6) 

To solve the optimal problem (5), a 4-order Runge-Kutte 
method [20] and the cubic-spline interpolation method for 
interpolating the curve are applied when needed [15]. Figure 
2 illustrates the smoothed proposed random-like trajectory, 
whose parameters are as same as Fig. 1. 
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Fig.2 the proposed random-like trajectory smoothed by time optimization 

D. Image Reconstruction 

The smoothed random-like sampling points are one type 

of non-Cartesian sampling, which can be recovered by 

NUFFT and NCG under the CS framework. 

The image is recovered by solving a minimization 

problem as similar as the problem of the Eq. (1), 

    
2

1 22 1
arg min{ TV( )}NUFFT    

f

b F f Wf f            (7)          

where f  is the desired image; b is the measured non-

Cartesian k-space data; NUFFTF  is the NUFFT encoding 

matrix; W is the wavelet transform matrix; TV( )  is total 

variation; 
1  and 

2  are constant regularization parameters. 

IV. RESULTS 

We conducted three simulations to demonstrate the 
performance of the proposed random-like trajectory method. 
The results were compared with those of the conventional 
Spiral Trajectories in the context of CS. 

A. Bloch Simulation 

In the Bloch simulation [21], Shepp-Logan phantom was 
used to generate the simulated data. Generally, we assumed 
gradients capable of 40 mT/m, slew-rate of 200 mT/m/ms, 
and a sampling rate of 4 μs. Figure 3 compares the images 
recovered by gridding and CS algorithms between Spiral and 
proposed trajectory. The size of the simulated image is 
256×256. The total 1024 points are separately sampled by 
the Spiral and proposed trajectories (m=3), as seen as Fig. 3, 
4 and 5. The proposed method for Shepp-Logan phantom is 
seen to as similar as Spiral under the Bloch simulation. 
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ig. 3 comparison of gradient x and y between Spiral (left) and proposed 
trajectory (right) 
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Fig. 4 comparison of sampling points in k-space between Spiral (left) and 
proposed trajectory (right) 

Fig. 5 comparison of the reference (left), zf-w/dc (middle) and CS recon 
(right) between Spiral (1024 points, second row) and the proposed 
trajectory (1024 points, first row) 

B. Phantom 

The phantom dataset was sampled by the spin echo 
sequence (TE/TR: 40/1000ms; RBW: 8.4 kHz; Flip angle: 
FOV: 220mm

2
). The data size is 256×256. The 7010 points 

are sampled on the Spiral and proposed trajectory (m=2), as 
seen as Fig.6. Figure 7 compares the images reconstructed by 
reference (left), zf-w/dc (middle) and CS recon (right) 
images between Spiral (1st row) and proposed trajectory 
(2nd row). The proposed method is seen to reduce the 
latticed artifacts, comparing the CS recon of Spiral 
trajectory. 
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Fig. 6 comparison the trajectories (7010 points) between Spiral (left) and 
proposed method (right) 

 

Fig. 7 comparison the reference (left), zf-w/dc (middle) and CS recon 

(right) images between Spiral (1st row) and proposed trajectory (2nd row) 

 
Fig. 8 comparison the reference (left), zf-w/dc (middle) and CS recon 

(right) images between Spiral (1st row) and proposed trajectory (2nd row) 

C. Human Brain 

An axial human brain data was sampled in the Ref. [3]. The 

size is 256×256. The 7010 points are sampled as same as 

Fig.6. Figure 8 compares the reference (left), zf-w/dc 

(middle) and CS recon (right) between Spiral (1st row) and 

proposed trajectory (2nd row). The proposed method can 

reduce more aliasing artifacts than Spiral under the CS 

framework. 

V. CONCLUSION 

In this paper, we propose a novel smoothed random-like 

trajectory scheme recovered under the CS framework. The 

simulations show the proposed trajectory outperforms the 

conventional Spiral trajectory in reducing aliasing artifacts. 

ACKNOWLEDGMENT 

The authors will thank Dr. Kevin F. King for his advices, 

and appreciate Dr. Michael Lustig, Dr. Eric Wong and Mr. 

Yonathan Nativ for their codes. 

REFERENCES 

[1] E. J. Candès, J. Romberg and T. Tao, “Robust uncertainty principles: 

Exact signal reconstruction from highly incomplete frequency 

information,” IEEE Trans. on Information Theory, vol. 52, pp. 489 – 

509, Apr. 2006. 

[2] D. Donoho, “Compressed sensing,” IEEE Trans. on Information 

Theory, vol. 52, pp. 1289 - 1306,  Apr. 2006. 

[3] M. Lustig, D. Donoho, and J.M. Pauly, “Sparse MRI: The application 

of compressed sensing for rapid MR imaging,” Magn. Reson. Med., 

vol. 58, pp. 1182-1195, Dec. 2007. 

[4] M. Lustig, D. Donoho and J. Pauly, "Rapid MR imaging with 

compressed sensing and randomly undersampled 3DFT trajectories," 

Proc. of the ISMRM, Seattle, WA, USA, May 2006. 

[5] M. Lustig, J. Lee, D. Donoho and J. Pauly, "Faster imaging with 

randomly perturbed undersampled spirals and L1 reconstruction," 

Proc. of the ISMRM, Miami, FL USA, May 2005.  

[6] T. Chang, L. He, T. Fang, “MR image reconstruction from sparse 

radial samples using Bregman iteration,” Proc. of the ISMRM, 

Seattle, WA, USA, May 2006. 

[7] A. Bilgin, T. Trouard, A Gmitro, M Altbach, “Randomly perturbed 

radial trajectories for compressed sensing MRI,” Proc. of the ISMRM, 

Seattle, Toronto, Canada, May 2008. 

[8] S. El-Metwally, Z. Abd-Elmoniem, M. Youssef, M. Kadah, " Rapid 

cardiac MRI using random Radial trajectories,” Proc. of the NRSC, 

Tanta, Egypt, Mar. 2008 

[9] A. Curtis and C. Anand, “Random volumetric MRI trajectories via 

genetic algorithms,” Int. J. of Biomed. Imaging, Vol. 2008(2008), 

297089. 

[10] M. Seeger, H. Nickisch, R. Pohmann, B. Scholkopf, “Optimization of 

k-space trajectories for compressed sensing by Bayesian experimental 

design,” Magn. Reson. Med., vol. 63(1), pp. 116-126, Jan. 2010. 

[11] R. Willett, “Sampling trajectories for sparse image recovery,” Proc. of 

the ISBI, Chicago, IL, USA, Jun. 2011. 

[12] V. Saligrama, “Deterministic designs with deterministic guarantees:   

Toeplitz compressed sensing matrices, sequence design and system,” 

http://arxiv.org/abs/0806.4958v2.pdf 

[13] S. Kirkpatrick, D. C. Gelatt, P. M. Vecchi, "Optimization by 

Simulated Annealing," Science 220 (4598): 671–680, 1983. 

[14] V. Černý, "Thermodynamical approach to the traveling salesman 

problem: An efficient simulation algorithm," Journal of Optimization 

Theory and Applications，45: 41–51, 1985. 

[15] M. Lustig, S-J Kim, J. Pauly, “A fast method for designing time-

optimal gradient waveforms for arbitary k-space trajectories,” IEEE 

Trans. Med. Image, vol. 27(6), pp. 866-873, Jun. 2008. 

[16] J. Fessler, “On NUFFT-basesd gridding for non-Cartesian MRI,” J. 

Magn. Reson., 188:191-195, 2007. 

[17] A. Fraser, “Simulation of genetic systems by automatic digital 

computers. I. Introduction". Aust. J. Biol. Sci. 10: 484–491, 1957. 

[18] F. Glover, "Tabu Search - Part 1". ORSA Journal on Computing 1(2): 

190-206, 1989. 

[19] M. Dorigo, “Optimization, Learning and Natural Algorithms,” PhD 

thesis, Politecnico di Milano, Italy, 1992. 

[20] W Boyce, R. DiPrima, “Elementary Differential Equations and 

Boundary Value Problems,” 6th ed. New York: Wiley, 1997. 

[21] Z. P. Liang, P. C. Lauterbur, “Principles of magnetic resonance 

imaging, A signal processing perspective,” IEEE Press, New York, 

2000.  

 

407


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

