
  

  

Abstract—Preoperative magnetic resonance (MR) breast 
images provide anatomical information about the lesion. By 
registering preoperative images to images in surgery, physicians 
can perform tumor excision more precisely. Preoperative 
imaging is performed in the prone position while breast surgery 
is in the supine position. Since breast is very deformable, large 
deformation is introduced, and its estimation has been a major 
challenge. We present a novel method to address this challenge 
and demonstrate its application in the deformation estimation 
between prone and supine breast meshed models. Firstly, we 
construct prone and supine meshed models via MR images and 
finite element method (FEM). Secondly, a revised surface 
registration scheme based on spherical harmonic analysis is 
employed to compute the displacement field on the surface. 
Finally, we expand the displacement field to internal by mean 
value interpolation. Our method takes advantage of the inherent 
anatomical feature and deformation of breast models. 
Compared with FEM, a prevailing solution for large 
deformation estimation, our method is easy to implement, 
irrelevant to biomechanical analysis and requires minimal 
segmentation. Experimental results show our method is a good 
approximation for FEM. 

I. INTRODUCTION 

Preoperative magnetic resonance (MR) imaging (e.g. 
dynamic contrast enhanced imaging) provides anatomical 
information about the tumor in the breast. By registering 
preoperative images to images in the surgical position, 
physicians are more informed about the size and location of 
the lesion, consequently increasing the accuracy of tumor 
excision. Preoperative breast MR imaging is performed in the 
prone position while breast surgery is performed in the supine 
position. Since breast is a very deformable organ in the human 
body, large deformation is involved and its estimation is a 
challenging requirement during registration [1]. Based on 
finite element method (FEM), patient specific biomechanical 
breast model has become a prevailing method to estimate large 
deformation between the two positions [1]-[6]. High accuracy 
breast surgeries with the assistance of FEM have also been 
reported [4]. Although these applications indicate a tempting 
solution for large deformation estimation, there are several 
concerns about FEM: 1. The modeling process of FEM is 
usually complicated and assumptions have to be made about 
material properties of breast tissues, constraint and loading 
condition to perform biomechanical analysis. Incorrect 
assumptions might lead to the failure of modeling process [2]; 
2. The implementation requires segmentation of different 
breast tissues and misclassification might affect the accuracy 
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of the model [5]; 3. Biomechanical models based on FEM are 
usually difficult to verify and evaluate [6]. 

In this paper, we propose a novel method for large 
deformation estimation. By combining spherical harmonic 
(SPHARM) analysis based surface registration algorithm [7] 
with mean value coordinates (MVC) [8] interpolation 
technique, we compute the displacement field from prone 
breast meshed model to its supine counterpart and achieve 
registration between the two models. For implementation 
convenience and efficiency, our method takes advantage of 
the inherent anatomical feature and deformation of breast 
models. Prone and supine meshed models are constructed 
based on MR images and FEM. SPHARM based surface 
registration algorithm provides point-to-point correspondence 
between the two breast model surfaces. Based on the 
correspondence, displacement field on the breast surface can 
be computed easily. MVC interpolation technique is applied to 
expand point-to-point correspondence to the internal volume 
of the breast model by linearly interpolating the displacement 
field on the surface to internal. Compared with FEM, the 
advantages of our method are threefold: 1. Our method is 
based only on the geometric information represented by the 
two breast models. Therefore, classification of different breast 
tissues, modeling of breast tissue material properties, 
constraint or loading condition is not required; 2. Since there is 
no need to classify different breast tissues and assign material 
properties, minimal segmentation is required only to separate 
the whole breast volume from other parts of the human body; 
3. Our method is easy to verify and evaluate whether it is a 
good approximation for FEM, as the supine model is 
constructed by FEM based on its prone counterpart. 

II. METHOD 

We present our large deformation estimation method and 
demonstrate its application in the deformation estimation 
between prone and supine breast meshed models. Figure 1 
shows the procedure for estimating large deformation between 
prone and supine using the developed method. 

The estimation process consists of four major steps as 
follow: 

Step 1: Model construction. Prone breast meshed model 
is generated from MR images by segmentation technique. 
Supine model is constructed by deforming the prone model 
using FEM. 

Step 2: Surface registration. We first establish 
point-to-point correspondence between the two model 
surfaces. Here, we use an anatomical-feature-guided 
SPHARM registration algorithm derived from SPHARM 
REgistration with ICP (SHREC) [7]. Then we take the 
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difference between the coordinates of each corresponding pair 
to compute the deformation field. 

Step 3: Volume registration. We use the inherent 
deformation between prone and supine surfaces as boundary 
condition for MVC [8]. Then we linearly interpolate the 
displacement field on the breast surface to its internal volume. 
Internal displacement field will be represented as a weighted 
sum of displacement at each point on the surface. 

Step 4: Error Estimation. Step 2 and step 3 will generate 
the displacement field on the whole breast volume. Then we 
compare the displacement field with that generated by FEM to 
verify the accuracy of the proposed method. 

A. Model Construction 
To generate a prone meshed model, we use ITK-Snap 

(http://www.itksnap.org/) [9] for segmentation (a set of prone 
breast images is separated from human body), and for 
automatic construction. Then we discretize the shape with 
four-node tetrahedral elements.  Biomechanical analysis based 
on FEM [3] is applied to deform the prone model to its supine 
counterpart in ABAQUS [10], a commercial FEM software 
package. Note that we can also acquire a supine mesh model 
by segmenting supine MRI breast images [4]. However, we 
prefer to acquire the model through biomechanical analysis.  
The reasons are twofold: 1. Biomechanical literature suggests 
that FEM is a decent approximation for large deformation 
[1]-[6]. 2. Prone and supine FEM models provide inherent 
vertex-to-vertex correspondence between each other, and will 
serve as a good benchmark for comparison. 

B. Surface Registration 
The goal of surface registration is to compute the 

displacement field between the two model surfaces, by 
establishing point-to-point correspondence between each 
other. Surface registration algorithm employed here is based 
on SPHARM analysis. The process consists of four steps: 1. 
Spherical parameterization; 2. SPHARM expansion; 3. 
Surface registration; 4. Displacement field computation. 

1) Spherical parameterization 
As SPHARM functions are defined on the unit sphere, 

spherical parameterization provides the domain for SPHARM 
analysis in the following steps. Given a breast meshed surface 
model 𝑀, which is a closed genus zero surface, its topological 
domain is a unit sphere 𝑆2 . 𝑀  is defined on the Cartesian 
coordinates system, denoted as (𝑥,𝑦, 𝑧). 𝑆2 is defined on the 
unit spherical coordinates system, denoted as (𝜃,𝜙), where 
𝜃 ∈ [0,𝜋]  is the polar component, and 𝜙 ∈ [0,2𝜋]  is the 
azimuthal component. We compute a bijective map 𝑓 ∶ 𝑀 →

 𝑆2 using a spherical mapping algorithm [11]. It generates a 
spherical parameterization:  

 𝑣(𝜃,𝜙) =  (𝑥(𝜃,𝜙),𝑦(𝜃,𝜙), 𝑧(𝜃,𝜙))𝑇  (1) 

where 𝑣 is a vertex on 𝑀. The mapping is conformal so as to 
preserve local geometric information. 𝑓  is initialized as a 
homeomorphism by centroid projection:  

 𝑓(𝑣) =  𝑣−𝑐
‖𝑣−𝑐‖

 (2) 

 where 𝑐 is the centroid of the model. Then the initial 
homeomorphism is optimized to acquire the resultant map by 
minimizing the discrete harmonic energy iteratively. The 
discrete harmonic energy is defined as: 

 𝐸(𝑓) =  ∑ 𝑘𝑢𝑣‖𝑓(𝑢) − 𝑓(𝑣)‖2{𝑢,𝑣}∈𝑀   (3) 

where {𝑢, 𝑣} is an edge on the mesh formed by vertex 𝑢 and 𝑣, 
𝑘𝑢𝑣  is a coefficient defined by cotangent scheme [12]. 
Steepest descent algorithm is employed for minimization [11]. 

2) SPHARM expansion 
The goal of SPHARM expansion is to represent spherical 

parameterized surface in the frequency domain by SPHARM 
coefficients. 𝑌𝑙𝑚 is a SPHARM function of degree 𝑙 and order 
𝑚. SPHARM functions are a set of eigenfunctions of Laplace 
operator, which form an orthogonal basis in Hilbert space. 
After parameterization, closed genus zero surface can be 
represented as a linear combination of SPHARM basis:  

 𝑣(𝜃,𝜙) =  ∑ ∑ 𝑐𝑙𝑚𝑙
𝑚=−𝑙 𝑌𝑙𝑚(𝜃,𝜙)𝐿𝑚𝑎𝑥

𝑙=0  (4) 

where 𝑐𝑙𝑚 = (𝑐𝑥𝑙𝑚, 𝑐𝑦𝑙𝑚, 𝑐𝑧𝑙𝑚)𝑇  are SPHARM coefficients and 
bandwidth 𝐿𝑚𝑎𝑥  is user-desired. In practice, in order to 
compute the coefficients, we first regularly sample the mesh. 
Then we employ fast spherical harmonic transform (FST) 
algorithm [13] to compute the coefficients in a divide and 
conquer strategy. We represent both prone and supine breast 
surface models using SPHARM expansion. The prone model 
is considered as a reference and the supine model is for 
registration. We denote the sets of SPHARM coefficients as 
𝑐𝑙,𝑟𝑒𝑓𝑚  and 𝑐𝑙,𝑟𝑒𝑔𝑚 , representing the prone and supine model 
respectively. 

3) Surface registration 
To describe the quality of alignment during surface 

registration, a cost function is constructed using SPHARM 
coefficient. Spherical parameterization provides natural 
point-to-point correspondence between manifolds: we define 
two points on the prone and supine models sharing the same 
coordinate (𝜃,𝜙)  in the spherical parametric space as a 
corresponding pair. To optimize the correspondence, a widely 
used cost function is root mean square distance (RMSD) 
between the two surface models [7]. Using SPHARM 
coefficients acquired from expansion, RMSD is defined as: 

 RMSD =  � 1
4𝜋
∑ ∑ �𝑐𝑙,𝑟𝑒𝑔𝑚 − 𝑐𝑙,𝑟𝑒𝑓𝑚 �2𝑙

𝑚=−𝑙
𝐿𝑚𝑎𝑥
𝑙=0  (5) 

Then we achieve the optimization by minimizing RMSD. 
Using anatomical feature like nipple as landmark, we have 
revised an optimization scheme based on SHREC [7]. The 
idea behind the scheme is straightforward: We fix the 
reference breast model in parameter space and rotate the 
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Figure 1. Diagram of the proposed large deformation estimation procedure 
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parameterization of the registered model so as to find a new 
parameterization that minimizes RMSD. Then the problem 
summarizes to: 1. Computation of a rotated parameterization; 
2. Find the optimized rotation. 

we define  a rotated parameterization as 𝑐𝑙𝑚(𝛼,𝛽, 𝛾) , 
where 𝑐𝑙𝑚  is the original parameterization, (𝛼,𝛽, 𝛾)  is the 
Euler angle to rotate 𝑐𝑙𝑚 in order to formulate the new one. 
Then we have:  

 𝑐𝑙𝑚(𝛼,𝛽, 𝛾) =  ∑ 𝐷𝑚𝑛𝑙 (𝛼,𝛽, 𝛾)𝑐𝑙𝑛𝑙
𝑛=−𝑙   (6) 

where 𝐷𝑚𝑛𝑙  is the rotation matrix [7]. 

To determine the optimized rotation, we use the nipple as a 
landmark. We first rotate both reference and registered 
parameterization so as to align their north poles (0,0) with the 
nipple. So the parameterizations are roughly registered. Then 
we fix the reference parameterization and rotate the registered 
one around the axis that passes through the north pole (nipple) 
until we acquire the minimal RMSD. 

4) Displacement field on the breast surface 
We have optimized point-to-point correspondence by 

surface registration. We denote the two vertices in a 
corresponding pair as 𝑣𝑟𝑒𝑓 on the reference (prone) model and 
𝑣𝑟𝑒𝑔 on the registered (supine) model. Then the displacement 
field on the breast surface from reference to registered can be 
defined as: 

 𝑑𝑠𝑢𝑟𝑓 =  𝑣𝑟𝑒𝑔 −  𝑣𝑟𝑒𝑓 (7) 

C. Volume registration 
We use the inherent deformation between prone and 

supine surfaces as boundary condition, and linearly interpolate 
interior points without manual intervention. Similar to (7), we 
define the displacement field between the two internal breast 
volumes as:  

 𝑑𝑖𝑛𝑡 =  𝑣𝑟𝑒𝑔 −  𝑣𝑟𝑒𝑓 (8) 

where 𝑣𝑟𝑒𝑔 and 𝑣𝑟𝑒𝑓 are a corresponding pair of vertices in the 
internal breast volume. Then we can consider the 
displacement field of the whole breast volume as a function 
defined on the reference model:  

 𝑑�𝑣𝑟𝑒𝑓� =  𝑣𝑟𝑒𝑔 −  𝑣𝑟𝑒𝑓 (9) 

To compute an estimation of 𝑑𝑖𝑛𝑡 , we employ MVC 
interpolation as volume registration algorithm. MVC has 
favorable properties like interpolation, smoothness and linear 

precision [8]. It expands the displacement field on the surface 
to the internal volume, and hence establishes internal 
point-to-point correspondence. The process consists of two 
steps: 1. Weights computation; 2.Volume registration. 

MVC can represent 𝑑𝑖𝑛𝑡  at each internal vertex as a 
weighted sum of 𝑑𝑠𝑢𝑟𝑓  at all the vertices on the surface. 
Therefore, in order to represent 𝑑𝑖𝑛𝑡 at one internal vertex, we 
should assign a weight to 𝑑𝑠𝑢𝑟𝑓 at every surface vertex. The 
weight is denoted as 𝑤𝑖, where 𝑖 represents the ith vertex on 
the breast surface. 𝑤𝑖 can be computed according to [8]. Then 
𝑑𝑖𝑛𝑡 can be computed by a weighted average formula [8]: 

 𝑑𝑖𝑛𝑡(𝑣) =  
∑ 𝑤𝑖𝑑𝑠𝑢𝑟𝑓(𝑣)𝑖

∑ 𝑤𝑖𝑖
 (10) 

For detailed implementation, please refer to [8]. 

III. RESULTS 
We used the proposed method to estimate the large 

deformation between prone and supine 3D breast meshed 
models. Then we compared the performance of the proposed 
method with that of FEM.  

We performed MR imaging on 10 patients at prone 
position. The MR images of the breast were acquired using a 
SIEMENS Verio 3T scanner with 32×32 cm field of view, 
320×320 resolution and 1.2-mm slice increment. The 
experiments were conducted with MATLAB 7.10.0, Intel® 
Core™2 Duo 2GHz CPU, 2GB RAM and Windows Vista 
Home Basic SP2.  After segmentation, the whole registration 
process lasted about 350s, with a model reconstruction 
bandwidth of 40. Time cost varied slightly from model details 
such as the number of elements. The FEM models applied in 
our experiment were with Hookean elastic material properties 
[3]. We fixed the chest wall as boundary and employed gravity 
loading on the model. It took about 20s to compute the 
deformation after modeling. Note that a more accurate FEM 
model in practice usually takes minutes or even hours to 
implement, depending on the anatomical complexity as well 
as the modeling complexity of materials. Therefore, the 
proposed method is an efficient alternative for large 
deformation prediction. 

Figure 2 (a) and (c) show the result of surface registration 
between prone and supine breast models. The bandwidth (𝑙) of 
model reconstruction is 40. The blue point located on the 
nipple is the north pole. The two red closed curves on the 
model represent latitude 𝜃 =  𝜋 6⁄  and 𝜃 =  𝜋 3⁄  in the 

      
(a) prone (mm) (b) spherical parametric space (c) supine (mm) 

 

Figure 2. Surface registration between prone and supine breast models 
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spherical parametric space respectively. The two blue closed 
curves represent longitude 𝜙 =  0,𝜋 and 𝜙 =  𝜋 2⁄ , 3𝜋 2⁄ . (b) 
shows the feature point and curves in the spherical parametric 
space. Visually, all the curves are well aligned between the 
two positions, indicating the two model surfaces are precisely 
registered. Therefore, the displacement field on the surface 
can be computed accurately. 

Accuracy of surface registration is crucial to the 
determination of displacement field in the internal volume. 
This is because the internal displacement field is estimated as 
a weighted sum of displacement on the surface. 

Figure 3 shows the error distribution of the recovered 
breast internal volume using the proposed method, compared 
with the FEM benchmark. Intuitively, most of the vertices 
have deformation error less than 3 mm. The average error is 
0.83 mm, while the max error is 9.24 mm. During breast tumor 
excision, clinicians usually excise an extra margin of 10mm 
healthy tissues around the estimated extent of the lesion [4]. 
Therefore, this is a promising result. It demonstrates that the 
proposed method can recover the deformation field accurately 
and is a good approximation for FEM. 

IV. DISCUSSION 
In this paper, we have proposed a novel method to estimate 

large deformation from prone position breast meshed model to 
its supine counterpart. We employ SPHARM based surface 
registration algorithm to estimate the displacement field of 
deformation on breast surface. Then we expand the 
displacement field to its internal volume using MVC based 
linear interpolation technique. Both surface and volume 
registration between prone and supine breast models are 
achieved. We compare the performance of our estimation 
method with FEM. Experimental results show only small 
errors are introduced using our method. Therefore, it is a good 
approximation for FEM. Our method is only determined on 
the geometric information represented by the meshed models. 
It also avoids complicated biomechanical modeling process 
and involves minimal segmentation. 

As suggested in section III, the accuracy of surface 
registration influences volume registration significantly. To 
improve the accuracy of surface registration, we will use a 
SPHARM registration method based on multi-landmark and 
spherical thin plate spline [14]. Then more feature points on 

the breast surface can be better aligned and hence should lead 
to a more accurate result. 

Since MVC is a linear interpolation technique, it can 
provide volume registration results with linear precision. 
Therefore, the estimation is not good enough in some cases. 
To further refine our estimation results and make a step 
forward to clinical application, we will compute a set of 
simulated supine MR images using the prone images and the 
estimated displacement field. Then we will apply non-rigid 
image registration technique [6] to further register the 
simulated images with MR supine images acquired from 
experiments [4]. After non-rigid registration, large 
deformation should be more precisely predicted.  

The presented method provides a general framework for 
large deformation estimation and can be applied for other 
surgical applications (e.g. brain, liver, lung) and 
multi-modality registrations (e.g. 3D ultrasound-MR, 
X-Ray-MR), where large deformations are also expected. 
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