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Abstract— Any defect in brain function and behavior may 

be attributed by a structural or functional deficiency. Effective 

connectivity is a potential approach for investigating the 

mechanisms of neural and psychological behaviors. In recent 

years, connectivity analysis has become increasingly significant 

in the field of computational neuroscience. Among Several 

neuroimaging modalities, fMRI has prominence for being non-

invasive and having high spatial resolution. 

Memory networks have critical role in retrieval and 

encoding events, and they have been investigated in healthy 

subjects as well as patients such as those with temporal lobe 

epilepsy. In this work, we tried to use fMRI to extract the brain 

network among regions involved in memory encoding. We 

applied conditional granger causality method (GCM) to 

experimental fMRI time series data from a memory task. 

For evaluating the accuracy of our analysis method we first 

tested the algorithm applied it on simulated data with known 

connections. Then the method was applied on real data from 

normal subjects for investigation the connectivity of 

hippocampal–neocortical regions.  

The results from simulated data showed that GCM is able 

to reveal the connections in small number of ROIs (i.e. 7-8 

regions). With increasing ROIs false negatives and false 

positives are increased. In the current work, seven ROIs of 

memory network introduced by C. McCormick (2010) were 

used and their connectivity and directionality were obtained. 

We found that activity of the left hippocampus causes the 

activity of the left inferior parietal cortex and also the right 

hippocampus positively influence the right retrospenial cortex. 

 

I. INTRODUCTION 

Whereas any region of brain controls specific behavior, 

doing or movements, any defect in these can return to lesion 

of structure or function. One of the important cognitive 

methods is survey of connection among these regions. 

Connectivity includes structural and neuronal connections, 

functional connectivity and in the end causality and effective 

connectivity that has become increasingly significant in the 

field of computational neuroscience and treatment of 

illnesses in recent years. 

Functional connectivity has been defined as “the temporal 

correlations between a seed region and other remote 

neurophysiological events” and effective connectivity as 

“the influence of one neural system exerts over another”[1, 
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2]. The effective connectivity definition is indeed a 

statement about causal relations between systems.  

Several neuroimaging modalities such as EEG, PET, 

MEG and fMRI are used for studying of causality. Among 

these, imaging by fMRI has prominence for many reasons 

such as being noninvasive and its high spatial resolution. 

There are many methods to evaluate causality in fMRI 

data set[3]. Structural equation modeling (SEM) among 

other methods is a well known one and has a longer history. 

After then it is worthwhile to mention dynamic causal 

modeling (DCM). Causality in DCM resulted from a non 

probabilistic and deterministic doing of dynamic system and 

assumes that this dynamic is reached to equilibrium state. In 

SEM model unlike DCM calculation is done on 

hemodynamic level and not on neural level [4-7]. DCM is 

completely diverse with two levels of hemodynamic and 

neural states. Hence in DCM changes emerge of neural 

level. So it is preferred to fmri data. But we should notice 

this point that DCM needs shorter TR[8, 9]. Memory 

networks modeling have a critical role in determining 

function of memory encoding and treatment of patients such 

as temporal lobe epilepsy (TLE). In 2001, Maguire[10] 

evaluated changes of connection of relative regions among 

two groups of healthy people and patients with bilateral 

hippocampus pathology and showed that, causality between 

hippocampus and parahippocampal cortex in control group 

during retrieval of memorabilia was increased while this 

wasn't so obvious in patients. In 2003 Simons perform a 

review on interactions between prefrontal cortex and the 

medial temporal lobe for processes of encoding 

memory[11]. In 2007, Rose Addis[11, 12] evaluate the role 

of hippocampus in changing of autobiographical memory 

networks in temporal lobe epilepsy patients by  using of  

SEM method. Also, in other work, she presented positive 

and negative images to two groups of young and elderly 

people in evaluating of encoding memory networks[13]. In 

2009, for better realization and treatment of TLE patients, 

was used from in vivo methods. First granger causality was 

applied on EEG data and then used structural techniques and 

diffusion tensor imaging(DTI) for evaluating structural 

changes of  patients brain in animal models [14]. Recently 

McCormick compares existent changes of fMRI data 

between two networks memory: encoding and retrieval. He 

uses from Seed partial least squares (PLS) analysis first for 

determining activate hippocampal–neocortical regions 

candidate for connectivity analysis in two tasks. Then was 

applied SEM to compare two encoding and retrieval 

memory networks[15]. 

A. Autoregressive modeling and granger causality 

  In this work we used autoregressive equations and 

granger models to evaluate connections among regions. The 

Effective connectivity estimation for evaluating encoding memory network 
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basic idea of this can be say presented by Wiener [16, 17]. 

He explained that, one time seri is Granger causal for other 

if the first helps predict the second at some stage in the 

future. Granger later formalized the prediction idea in the 

form of linear regression equations. Specifically, if the 

variance of the autoregressive prediction error of the first 

time series at the present time is reduced by inclusion of past 

measurements from the second time series, then the second 

time series is said to have a causal influence on the first 

one[17]. 

 Granger causal modeling (GCM) doesn't need prior 

anatomical and structural information about network so we 

prefer it to other methods that are hypothesis driven . DTI 

tractography can provide a more data-driven way of forming 

these prior data [18].  

GCM has a simple concept. It has ability of surveying in 

both time and frequency domain. Granger can be used as a 

pairwise method without regarding influence of other 

regions on connections and also as conditional ones with 

regarding influence of all of regions in our network. So we 

used from conditional granger causality in our work [16, 19-

22].  

If we assume 3 signals x,y,z and a particular 

autoregressive lag length p, can estimate the following 

restricted equation by ordinary least squares (OLS): 
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Covariance noise matrix is: 
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So for an F-test of the null hypothesis we estimate the 

following unrestricted equation: 
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So covariance noise matrix is: 
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From these two equations we can define granger cause 

of X on Y in the form of:  
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So can said that when connection of Y to X is mediated 

by Z, jb4  will be zero and 3¦ ¦xx . But if this connection 

is related directly with regarding of influence of Z, Y the 

value of ZXYF |o  will be positive and we'll have 

3¦�¦xx . 

 

II. MATERIALS AND METHODES 

A. Simulated data 

We haven’t any complete maps from function or 

effective connectivity. For evaluating accuracy of this 

method we first test algorithm on simulation data with 

known connections and then we applied to real data. All 

simulations were done on MATLAB 7.11.0   software. First 

we convolve the square signal as a task representation with a 

hemodynamic response for every node in our simulation. So 

we design my network with auto regression models from 

BOLD signals with 3 lags in five node network and 8 lags in 

ten node network. After that data was downsampled and 

added Gaussian noise to it. This simulation was done with 

five and ten nodes. We tried to design our signals similar to 

real fMRI data with 160 volumes and TR=3. So we 

calculated the accuracy of our algorithm[14, 18].  

B. subjects 

Eighteen right-handed adults (12 female; mean age=25 

years with age range of 20 to 30 years) participated in this 

study. They reported no psychiatric and neurologic illness 

and none of them were taking psychotropic medicine. 

C. Experimental paradigm 

The nonverbal memory encoding task, including 60 

unfamiliar human faces was employed in this study. During 

scanning, subjects presented with 10 blocks which each 

block was consist of six faces. Before scanning, subjects 

were instructed to remember the faces for a later test. 

Approximately 20 minutes after scanning, subjects 

performed a recognition test outside the scanner. The 

subjects were shown the pictures and were asked if they 

were new pictures or identical to the ones previously 

shown. For 60 target faces, two states were assumed; a 

subject can recall faces (R response-FR) or not (F response-

FF). Responses to recognition test were used in image 

analysis. 
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D. fMRI acquisition 

Images were acquired on a Siemens 3 T Trio scanner 

with 12 channel head coil. Functional T2* weighted images 

were collected with blood oxygen level dependent contrast 

(BOLD), TR = 3,000ms, TE = 30ms, flip angle = 90 degree, 

FOV =192mm2, matrix=64×64, voxel size=3×3×3 mm3, 

Slice thickness=3mm, slice gap=0mm. Prior to the 

functional scan a T1-Weighted anatomical volume was 

acquired using a gradient echo pulse sequence, TR 

=1800ms, TE =3.44ms, flip angle =7 degree, voxel 

size=1×1×1 mm3, fov=256 mm2, matrix=256×256, slice 

thickness=1mm, slice gap=0mm. 

F. fMRI data analysis 

following pre-statistics processing were applied: motion 

correction, slice-timing correction, spatial smoothing using a 

Gaussian kernel of 6.0mm full width half maximum; 

highpass temporal filtering (Gaussian-weighted least-

squares straight line fitting, with sigma=60.0s. Time-series 

statistical analysis was carried out using FILM with local 

autocorrelation correction. As a result, for each subject, one 

contrast image obtains corresponding to the subsequent 

memory effect (FR-minus-FF). Functional data was 

registered to high resolution structural and/or standard space 

images. This entire image was used for the second-level 

analysis. In the next stage Higher-level analysis was carried 

out to obtain mean activation across the normal groups (one-

sample t-test). 

 

III. RESULTS 

We made two simulated fMRI data for two permanent 

networks with five and ten nodes. Structure of each network 

and time series of each node are illustrated in figure 1 and 2. 

In these figures red lines indicate a bilateral connection 

between two nodes. First we checked covariance stationary 

matrix of time series using KPSS and ADF (Dickey-Fuller) 

test. Before making regression equations, was calculated the 

best model order. Either the Akaike information criterion 

(AIC) or the Bayesian/Schwartz information criterion (BIC) 

was used. Table 1 compares false negatives and false 

positives of resulted connections between two model orders 

after 20 repetition of our algorithm. The maximum false 

positive and false negative for 5 nodes network is 15 and 5. 

For 10 nodes network is 75 and 15. So we evaluated the 

portion of the correlation structure in data that is accounted 

for by an MVAR predicted model. Model consistency was 

higher than 80%. So we calculated significant Granger 

causalities with FDR (false discovery rate). P-value 

threshold was set to 0.01. 

   

 
Fig1.five nodes network and timeseries of each nodes 

 

 
Fig2.ten nodes network and timeseries of each nodes 

 

Table I. Errors in two networks with two model order estimation 
Network Five Nodes Ten Nodes 

Model order 

 

Errors 

AIC 

= 

7 

BIC 

= 

3 

AIC 

= 

10 

BIC 

= 

3 

FP     0.5     0.9     1.6 3.03 

FN 0.47 0.25 4.85 3.16 

Total Errors 0.97 1.15 6.45 6.19 

 

In next step, we determine interested active regions.    

Five of these are illustrated in figure 3.  

So we select seven interest regions and averaging all of 

voxel’s time series in each region. Our selection of regions 

for the GCM analysis was based on C. McCormick (2010) 

paper region selections. These regions are: bilateral 

hippocampi (LHC =í18, í32, í6; RHC= 14, í32, í10), 

bilateral inferior frontal cortices (LIFG =í34, 28, 4; RIFG 

= 36, í56, 40), left inferior parietal cortex (LIPC =í36, 

í56, 40), right parahippocampal gyrus (RPHG = 26, í28, 

í18) and right retrosplenial cortex (RRSC = 6, í44, 20). 

So we applied GCM in our regions. Selected best order 

with AIC and checked for uncorrelated residuals using 

Durbin-Watson test. For finding significant Granger 

causality interactions we set p-value to 0.01 and 

theresholded multiple testing with FDR. Results are 

illustrated in figure 4. 
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Fig3. Upper: bilateral hippocampi & right parahippcamal gyrus, 

bottom: bilateral inferior frontal gyrus regions that activated from 

encoding memory task 

 

 
Fig4. Connections among seven hippocampal-neocortical regions 

IV. CONCLUSION 

In this study we examined conditional granger causality 

on two simulated and real data presented with encoding 

task. We estimated errors including false positive and false 

negative  in simulated data  .With various simulated data 

we showed that conditional GCM has more ability for 

recognition of small networks than greater networks with 

more nodes. So, definition of fewer regions in our memory 

encoding network helped us to achieve reliable results. In 

calculating best order of regression model, AIC method 

gives the values near the real values compared with BIC. 

We found that activation of the left hippocampus 

causes the activation of the left inferior parietal cortex and 

also the right hippocampus positively influences the right 

retrospenial cortex. 

We can use from other granger methods such as partial 

granger and nonlinear ones to achieve more accurate 

results.   
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