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Abstract— Sweep imaging Fourier transform (SWIFT) is an
efficient (fast and quiet) specialized magnetic resonance imaging
(MRI) method for imaging tissues or organs that give only
short-lived signals due to fast spin-spin relaxation rates. Based
on the idea of compressed sensing, this paper proposes a novel
method for further enhancing SWIFT using chaotic compressed
sensing (CCS-SWIFT). With reduced number of measurements,
CCS-SWIFT effectively faster than SWIFT. In comparison
with a recently proposed chaotic compressed sensing method
for standard MRI (CCS-MRI), simulation results showed that
CCS-SWIFT outperforms CCS-MRI in terms of the normalized
relative error in the image reconstruction and the probability
of exact reconstruction.

I. INTRODUCTION

Fast image acquisition in biomedical imaging is important
for reducing scanning time on patients, avoiding physiolog-
ical effects, overcoming physical constraints of the imag-
ing system, and meeting timing requirements for imaging
dynamic structures or processes. With standard magnetic
resonance imaging (MRI), it is also challenging to perform
imaging of tissues or organs that give only short-lived
signals due to fast spin-spin relaxation rates. Another general
challenge in biomedical imaging is that an overwhelming
amount of acquired data as well as their dimensionality and
complexity increase rapidly. These two challenges motivate
the development of specialized MRI methods with more
efficient acquisition and reconstruction.

With respect to the first challenge, state-of-the-art tech-
niques for fast MRI acquisition follow two approaches: (i)
parallel imaging and (ii) frequency-modulated (FM) excita-
tion. More information on parallel imaging can be consulted
in [1]. In this paper, we only consider the latter approach.
Data acquired in MRI provide complete Fourier, or k-
space, measurements. Image reconstruction can be done in
the image domain or in the k-space domain (i.e., Fourier
domain).

In the FM excitation approach, with single-coil acquisi-
tion, the standard radiofrequency (RF) pulse is pre-modulated
by another FM pulse, causing the k-space to spread. The
use of linear FM pulses (also called chirp pulses), which
have quadratic phase profiles, was proposed in [2]. A re-
cently introduced method called SWIFT (SWeep Imaging

∗ The work was supported under Project 57/2011/HDDT granted by Asia
Research Center, Vietnam National University, Hanoi, Vietnam.

1 Fac. Electronics and Telecommunications, University of
Engineering and Technology, Vietnam National University Hanoi;
linhtrung@vnu.edu.vn.

2 Lab. Information Processing and Transmission, University Paris 13.
3 Dept. Electrical and Computer Engineering, University of Illinois at

Urbana-Champaign.

with Fourier Transform) exploits a frequency-swept exci-
tation pulse and virtually simultaneous signal acquisition
in a time-shared mode [3], able to produce fast and quiet
imaging. In SWIFT, the excitation pulses belong to the
family of hyperbolic secant pulses, which employ both in
the frequency and amplitude modulation, producing uniform
and broadband spin excitation. With respect to the second
challenge, one way of seeking a solution is to search for the
actual amount of information in the data rather than their
ambient dimensionality. Fortunately, many of medical images
inherently exhibit a sparse representation in some transform
domains, such as the wavelet domain (a representation of
the image using wavelet functions) in which only a small
number of wavelet coefficients are significant. Hence, neg-
ligible coefficients can be discarded, still the reconstructed
image has acceptable quality. Thanks to this sparse struc-
ture, compressed sensing (CS), proposed by Candes and
Donoho (a good tutorial is given in [4]), can provide an
efficient way to acquire sparse signals and, thus, helps reduce
the dimensionality of the data drastically. Generally, CS
senses the signal by random linear projections to produce
an observed signal in a special domain (which is often
different from the sensing/ambient domain) and the number
of samples of the observed signal is far smaller than that
obtained as if the signal were sensed in the ambient domain
(using, e.g., Nyquist sampling). Exact reconstruction can be
achieved by nonlinear sparse approximation algorithms, such
as `1-minimization based algorithms or greed pursuit based
algorithms.CS has recently been shown to be successfully
applied to standard MRI for fast acquisition by Lustig et
al. [5]; the method is called sparse MRI. Recently, Puy et al.
applied CS to MRI with linear FM excitation [6].

In the present work, inspired by the advantages of SWIFT
and CS, we propose to use SWIFT in conjunction with CS
in order to tackle both the two abovementioned challenges.
Also, we will take a deterministic approach in CS, wherein
the measurement matrix is deterministically designed. In this
case, we follow the deterministic chaos compressed sensing
(CCS), proposed in [7], which has been applied to standard
MRI acquisition (CCS-MRI) in [8].

The paper is organized as follows. Section II describes the
principle of two-dimensional (2D) MRI acquisition and the
SWIFT method, in view of algebraic formulation. Section III
first provides the fundamentals of CS, then describes the
proposed method CCS-SWIFT. Section IV shows simulation
results to illustrate the effectiveness of CSS-SWIFT, and the
superior performance of CCS-SWIFT in terms of probability
of exact reconstruction and normalized image reconstruction
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Fig. 1. k-space of a brain MR image. (a)– analog acquisition, (b)– linear
sampling, (c) linear undersampling. In (c), a binary mask (of 128 × 128
points) is applied to (a), followed by a power decay law along direction ky .

error, in comparison with CCS-MRI.

II. SWEEP IMAGING WITH FOURIER
TRANSFORM

A. Standard 2D-MRI Acquisition

In principle, by exciting the object with a time-varying
excitation RF pulse, the resonance information of the nuclei
can be picked up by an RF receiving coil. Let us take
the simple case of acquisition of a full 2D digital image
of an object, e.g., a brain slice, to explain how the image
acquisition is done. During a series of RF excitations each
of which encodes the 2D location information of a particular
point on the brain slice, the receiving coil detects an analog
MRI time signal which contains the resonance information at
all encoded locations. The encoded locations are represented
in a temporary image space, which is called k-space. The
changes of locations in the k-space during the acquisition
time often form a smooth trajectory (see Fig. 1(a)). Most of
the encoded information concentrates around the origin of
the k-space, and the density of the k-space approximately
follows a power decay law. A digital MRI signal is then
obtained by sampling the time (t) and the k-space. Next, the
digital MRI image of the brain slice can be reconstructed
by applying a reconstruction algorithm on the digital signal.
The reconstruction of the image can be done in the image
domain or the k-space domain. For example, we apply the
2D Fourier transform on the digital MRI signal from the
k-space to the pixel domain.

Consider the imaging of a 2D slice of the object in
the 2D plane {x, y}. Denote m (x, y) the object’s image,
to be reconstructed. Under discrete formulation, the signal
acquired by the receiving coil is given by the following
imaging equation:

ν (kx, ky) =

Nx−1∑
nx=0

Ny−1∑
ny=0

m (nx, ny) e
−j(kxx+kyy), (1)

where kx and ky respectively encode the k-space information
of locations corresponding to the x and y directions of the
image, Nx and Ny respectively are the numbers of pixels
along x and y axes of the image. k = {kx, ky} is said to lie
in the k-space. Note that, the discrete representation in (1)
corresponds to a linear full-sampling in the k-space along a
Cartesian trajectory as shown in Fig. 1(b). In matrix form,

(1) is expressed as
ν = Fm, (2)

where F is the Fourier matrix, m is the image to be acquired,
and ν is the MR signal obtained in the k-space. Therefore,
m can be reconstructed by applying the inverse Fourier
transform on ν. This is why acquisition in MRI is called
Fourier imaging.

B. Specialized MRI with SWIFT

The main advantage of SWIFT originates in its nearly
simultaneous excitation and acquisition scheme. The scheme
employs a sequence of FM RF pulses, each having a duration
Tp typically in the millisecond range.

In the present implementation, the RF excitation pulse
utilizes both the amplitude modulation, ω(t), and frequency
modulation, ωRF(t), expressed by

h(t) = ω(t) exp

{
−j
∫ t

0

(ωRF(τ)− ωc) dτ

}
, (3)

where ω(t) and ωRF(t) are designed based on the family of
adiabatic hyperbolic secant (HSn) pulses, fn(t), given by

fn(t) = sech
[
β

(
2t

Tp
− 1

)n]
, (4)

ω(t) = γB1maxfn(t) (5)

ωRF(t) = ωc + 2A

( ∫ t

0
f2n(τ) dτ∫ Tp

0
f2n(τ) dτ

− 1

2

)
. (6)

Above, n is a shape vector (typically, n ≥ 1), β is a
truncation factor (usually, β ≈ 5.3), Tp is the pulse length, γ
is the gyromagnetic ratio, B1max is the maximum amplitude
of the RF pulse, ωc is the center angular frequency, and A
represents the bandwidth of the pulse (−A ≤ ωRF−ωc ≤ A).
In SWIFT, during the excitation of the HSn pulse from 0 to
Tp seconds, the transmitter is repeatedly turned on and off to
enable sampling (acquisition) in short intervals of time, thus
the acquisition is virtually performed simultaneously with
the excitation. For detailed information and implementation
of the SWIFT method and the design of HSn pulses, the
reader is invited to consult references [3].

In the present work, the HSn pulse can be viewed as such
it is used to excite the FID (free-induction decay) system
in MRI, instead of being excited by the impulse function as
in standard MRI acquisition. In other words, the image is
premodulated by the hyperbolic secant pulse. Therefore, the
resulting imaging equation becomes

ν (kx, ky) =

Nx−1∑
nx=0

Ny−1∑
ny=0

m (nx, ny)h (nx, ny) e
−j(kxx+kyy),

(7)
which can be expressed in matrix form as

ν = FHm. (8)

where H is a diagonal matrix whose diagonal elements are
obtained from the hyperbolic secant pulse h(t). Note that,
matrix representation of SWIFT has been shown in [9].

381



III. CHAOTIC COMPRESSED SENSING FOR SWIFT

A. Compressed Sensing Fundamentals

To simply illustrate the concept of CS, we describe the
discrete-to-discrete formulation of CS as follows. Let x ∈
RN be the signal of interest and suppose that x admits a
sparse representation by a known transform in a proper basis
Ψ = [ψ1, . . . , ψN ] as given by x = Ψα, where α ∈ RN

is a K-sparse vector (i.e., containing exactly K nonzero
values) and the transform matrix Ψ, used to represent x
in the sparsity basis, is called the sparsifying matrix or
representation basis. In CS, x is acquired by:

y = Φx = ΦΨα = Θα (9)

where Φ ∈ RM×N is the linear sensing matrix, and y ∈ RM

is the vector contain the measurements, M < N . We wish to
have M as small as possible and the reconstruction algorithm
as efficient as possible. When M � N , to reconstruct x
from y we need to solve an under-determined linear system
of equations. In this case, CS theory interestingly states
that signals that admit a sparse representation in a known
basis can be uniquely reconstructed from M measurements
in an incoherent domain. Exact reconstruction is feasible
based on two principles: sparsity and incoherence. Sparsity
is related to the signal of interest while incoherence is related
to the sensing modality. They admit a duality relationship in
CS such that signals having a sparse signal representation
must have a very dense acquisition representation. Thanks
to the sparse structure of α, the recovery of α is made
possible if Θ is constructed as an almost orthonormal system
when restricted to sparse linear combinations. Specifically
Θ must satisfy the so-called Restricted Isometry Property
(RIP) of order K. In other words, Θ approximately pre-
serves the length of K-sparse signals; all subsets of K
columns of Θ are near orthogonal. One way to satisfy RIP
is incoherence, denoted as µ(Φ,Ψ), measuring the largest
correlation between any two columns of Φ and Ψ. The
coherence is constrained by 1 ≤ µ ≤

√
N and compressed

sensing takes place when µ is small. When entries of Φ
are independently and identically Gaussian distributed with
zero mean and variance of 1/M (in turns, µ is small), if
M ≥ CK log(N/K) for some positive constant C, then
exact reconstruction of α (or, essentially, x since Ψ is
known) is achieved with overwhelming probability using the
following `1minimization problem:

α = argmin
α′
‖α′‖1 subject to Θα′ = y. (10)

When there is noise in the measurements, the optimization
problem is reformulated as follows:

α = argmin
α′
‖α′‖1 subject to ‖Θα′ − y‖2 < ε, (11)

where ε is a constant related to the variance of the noise.

B. Proposed Chaotic Compressed Sensing for SWIFT

The above works using CS for MRI use random sensing.
However, random sensing has some drawbacks in compar-
ison to deterministic sensing: less efficient recovery time,

no explicit constructions, larger storage, looser recovery
bounds [10]. As we have mentioned in the introduction,
chaotic design for the measurement matrix in CS has been
proposed in [7]. In this method, a sampled logistic sequence
is generated by a deterministic chaotic system called Logistic
Map. Then, the measurement matrix is created column by
column with this sequence. One of the advantages of using
chaotic sequences instead of random ones is due to its
simpler hardware implementation.

Chaotic design for the measurement matrix has been
reformulated to apply CS in standard MRI by under-sampling
the k-space in a chaotic manner [8]. Mathematically put, the
imaging equation with incomplete measurements in the k-
space becomes

ν = PFm, (12)

where P ∈ RM×N is a rectangular binary matrix containing
only one non-zero value on each row, representing the action
of selecting only M rows out of F where the indices of
these rows are obtained chaotically. By corresponding the
CS model in (9) and the imaging equation in standard MRI
in (12), one can see that the CS incomplete measurements
y ≡ ν, the measurement matrix Φ ≡ PF and the underlying
signal to be reconstructed x ≡m. To obtain P, we generate
the values of kx by the Logistic Map:

s(n+ 1) = as(n)(1− s(n)), (13)

where parameter a controls the chaotic behavior of s(n).
The resulting values are used to determine which values
of ky are to be obtained from sampling in the k-space. In
other words, we have set up a binary mask P for chaotically
under-sampling the k-space (see Fig. 1(c)); note that linear
sampling is assumed along kx.

Now, by incorporating CS in the specialized MRI designed
by SWIFT, the equivalent matrix representation of the imag-
ing equation in SWIFT becomes

ν = PFHm, (14)

where H is the hypersecant matrix. The image is recon-
structed by solving the following optimization using the non-
linear conjugate gradient (NCG) algorithm:

m̂ =argmin
m

{
‖PFHm− ν‖22 + λ ‖ΨHm‖1

}
(15)

where λ is a tuning constant for the trade-off between fidelity
term and the sparsity, ε controls the fidelity term, and Ψ
represents the sparsifying matrix in the wavelet domain.

IV. SIMULATION

In the simulation, the data source in use is a brain slice of
128×128 pixels, as shown in Fig. 2(a). Define a compression
radio r =M/N . The logistic map was simulated with a = 4
and the initial condition of s(0) = 3. For the HSn pulse,
we set n = 1. Fig. 2(b) shows the reconstructed image
when the k-space was under-sampled linearly at the ratio of
r = 0.3. The ringing in this image reflects the aliasing effect
due to under-sampling. Figs. 2(c) and 2(d), respectively,
show the reconstructed images when CCS is applied for
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(a) (b)

(c) (d)

Fig. 2. Original brain slice image (a), and its reconstructed images (b)
without using CS, (c) with CCS-MRI and (d) with CCS-SWIFT, at r = 0.3.
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Fig. 3. Normalized image relative error performance.

standard MRI and for specialized MRI using SWIFT, both
with the same ratio r = 0.3. They indicate that CCS-SWIFT
offers a higher quality of reconstruction than CCS-MRI. This
better performance is because the broadband HSn pulse has
spread the k-space. In other words, it reduces the mutual
coherence µ(Φ,Ψ). Performance comparison between CCS-
MRI and CCS-SWIFT is also shown in Fig. 3 with a series
of compression ratios from 0.1 to 0.5. We use the normalized
image relative error metric for reconstruction performance

e =
1

Nx ×Ny

∑Nx

i=1

∑Ny

j=1 |mij − m̂ij |∑Nx

i=1

∑Ny

j=1 mij

(16)

As can be seen in Fig. 3, it is obvious that CCS-SWIFT
outperforms CCS-MRI. Another performance study based
on the probability of exact reconstruction is also in Fig. 4.
This reconfirms the superior performance of reconstruction
of CCS-SWIFT.
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Fig. 4. Probability of exact reconstruction performance.

V. CONCLUSIONS

By combining CS in SWIFT, this paper presents a novel
method to enhance the speed of acquisition in SWIFT for
MRI applications. For the sake of simplicity in presenting
the idea of CS, this paper only considered 2D SWIFT
(using horizontal trajectories in the k-space) rather than 3D
SWIFT (using radial trajectories) as implemented in [3].With
this presentation, instead of fully sampling the k-space, we
only selected M out of N horizontal trajectories in the k-
space and the selection of these trajectories was done using
the values generated from the chaotic sequence (Logistic
map). The good performance of CSS-SWIFT at the ratio
of r = M/N = 0.5 implies that the speed of acquisition
in SWIFT can be enhanced by a factor of 2 when combined
with CS. Also, CSS-SWIFT performed better than CSS-MRI
because the use of the hyperbolic secant pulses effectively
reduces the coherence between the measurement matrix and
the sparsifying matrix in CS.
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