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Abstract— Independent component analysis and blind source
separation methods are steadily gaining popularity for sepa-
rating individual brain and non-brain source signals mixed by
volume conduction in electroencephalographic data. Despite the
advancements on these techniques, determining the number of
embedded sources and their reliability are still open issues.
In particular to date no method takes into account trial-to-
trial variability in order to provide a reliability measure of
independent components extracted in Event Related Potentials
(ERPs) studies. In this work we present ErpICASSO, a new
method which modifies a data-driven approach named ICASSO
for the analysis of trials (epochs). In addition to ICASSO the
method enables the user to estimate the number of embedded
sources, and provides a quality index of each extracted ERP
component by combining trial-to-trial bootstrapping and CCA
projection. We applied ErpICASSO on ERPs recorded from
14 subjects presented with unpleasant and neutral pictures.
We separated potentials putatively related to different systems
and identified the four primary ERP independent sources.
Standing on the confidence interval estimated by ErpICASSO,
we were able to compare the components between neutral and
unpleasant conditions. ErpICASSO yielded encouraging results,
thus providing the scientific community with a useful tool for
ICA signal processing whenever dealing with trials recorded in
different conditions.

I. INTRODUCTION

Single-trial ERP data have been historically dealt with
by averaging so as to increase the signal-to-noise ratio
and highlight changes in subject state possibly linked to
fluctuations in expectation, attention or other factors [14].
Recently however, as averaging may hide response varia-
tions in amplitude, time course and scalp distribution across
trials, research is orienting towards methods, each based
on different hypotheses, able to highlight these factors like
microstate analysis [15], parallel factor analysis [21] and
so on. In particular, Independent component analysis (ICA)
has been widely adopted to analyze single-trial multichannel
EEG data from ERP experiments [5], [13], [14], [6]. ICA
blindly separates the input data into temporally-independent
and spatially-fixed components arising from distinct brain
or extra-brain sources [14], [19], [20], [7], [18]. A great
number of different ICA algorithms share the “independence
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maximization” goal [17] (to date the most used ones are
probably Second-Order Blind Identification [23], extended
Infomax ICA [17], [4] and FastICA [12]) and generally
yield similar results on simulated data. Nevertheless, as
real EEG source signals are not perfectly independent and
limited in recording time, different ICA algorithms often
return different results. As such, increasing effort is being
devoted to comparing the effectiveness of most BSS and ICA
algorithms [8] and the reliability of independent component
estimates [11], [22]. Despite great improvements of BSS
and ICA algorithms in recent years, no method takes into
account the trial-to-trial variability, the dataset dimension and
simultaneously provides a reliability measure of independent
ERP components. Also, a key issue regarding all blind ERP
decompositions is still that of determining the number of
embedded sources.

In this work we present for the first time ErpICASSO [3],
a substantial improvement of the readily available toolbox,
ICASSO [11]. ErpICASSO approaches the IC-ERP decom-
position by combining trial-to-trial bootstrapping and CCA
projection [9]. It estimates the number of embedded sources
and provides a reliability measure of each extracted ERP
component. ErpICASSO addresses some of the issues of
ICASSO (see discussion): basically it improves its clustering
step by applying CCA projection only on independent com-
ponents which are correctly parsed into different clusters,
it selects the number of independent components by aver-
aging the clusters quality indexes and performs trial-to-trial
bootstrapping thus enabling its use on trials datasets. For
demonstration purposes, the proposed algorithm has been
applied to ERPs evoked on 14 subjects by unpleasant and
neutral pictures.

II. MATERIALS AND METHODS
A. Decomposition of ERPs with ErpICASSO

The core of ErpICASSO is a data-driven approach named
ICASSO [11], [22], specifically modified by us for the
treatment of ERP trials, to disentangle components of ERPs
deriving from the activity of independent brain sources
and to estimate their reliability. Basically ErpICASSO is a
clustering stage applied to several runs of an ICA algorithm
on a trial-to-trial bootstrapped dataset. ErpICASSO consists
of the following steps:

1.Selection of the ICA algorithm We considered the stan-
dard linear, noise-free ICA model X = AS of signal matrix
X derived from independent sources S linearly mixed by the
matrix A. For the estimation of A and S, we used FastICA
with symmetrical approach, turned-on stabilization, tanh as
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contrast function and skewness as fine-tune function. The
whitening step within FastICA reduced the data dimension
to the number of embedded sources n. We determined n as
described at the end of this section.

2.Multiple ICA runnings We estimated M replicates
of ICs using the FastICA algorithm. Each time the Fas-
tICA initial conditions were randomized, the trials from all-
subjects recordings were bootstrapped and the resulting set
concatenated so as to arrange them in the signal matrix
X . X had m rows and (p + q)τ columns where m was
the number of EEG channels, p and q were the number of
neutral and unpleasant trials, respectively and τ the number
of time points of each trial. FastICA gave an estimate of S
(n rows and (p+ q)τ columns) whose rows represented the
n independent components and an estimate of the unmixing
matrix W (m rows and n columns), that is the pseudoinverse
of A: the columns of A represent the weight distribution
across the scalp of the correspondent IC.

3. IC replicates clustering The replicates derived from
the M runs were clustered according to their mutual sim-
ilarities σ, defined as the absolute value of the correlation
coefficient. We identified n disjoint clusters by means of an
agglomerative hierarchical clustering (dendrogram) with the
group average-linkage criterion as agglomeration strategy.
The number of clusters was set so as to equal the data
dimension after the reduction.

4. Removal of ambiguous IC replicates The FastICA
runs that yielded two or more IC replicates grouped by the
dendrogram in the same cluster were excluded from further
analysis. This step significantly increased the reliability of
the method since unreliable FastICA runs and outliers were
removed from the start.

5. Best IC replicates with reliability For each cluster
the best IC estimate was identified as the centroid of the
replicates belonging to the cluster. The centroid is the IC
within the cluster having the maximum sum of similarities
to the other ICs in the cluster. For the reliability of the cluster,
we used the quality index Iq defined as follows:

Iq(Ck) =
1

#2
Ck

∑
i,j∈Ck

σij −
1

#Ck
#C−k

∑
i∈Ck

∑
j∈C−k

σij

where k identifies the cluster, #Ck
the number of IC repli-

cates included in the cluster Ck whereas #C−k
the number of

IC replicates not included in the cluster Ck, and σij = |rij |
is the similarity between the IC replicates i and j, that is
the absolute value of the Pearson correlation coefficient rij .
Concerning the visualization of clustering results, in addition
to the dendrogram, ErpICASSO produces a similarity map
where each component estimate is plotted as a point, and
the distances dij =

√
1− σij between points are inversely

related to the similarities between components. Moreover, Er-
pICASSO uses the Curvilinear Component Analysis (CCA)
as a multidimensional scaling method in order to project
the points in a two-dimensions space so as to obtain the
similarity map that we also used in the Results section. Iq
measures of the variability of the ICA decomposition and

consequently it is related to the confidence intervals of the
averaged trials in the independent component space.

6. Activity templates and Best Activity Templates For
each FastICA run the activity templates (ATs) were derived
by separating the component time series into epochs accord-
ing to the concatenated trials and by splitting the epochs into
those related to unpleasant stimuli (ATU ) and those related
to neutral ones (ATN ). The same was done for the best
activity templates (BATs) derived from the best IC replicates
as defined in the step 5.

7. Number n of embedded sources
To determine the number n of embedded sources, within

ErpICASSO the whole procedure (items 1-4) is repeated
varying n, from 1 to 10. Each time the Iavgq is the mean
index of quality over the clusters: Iavgq = 1

n

∑n
k=1 Iq(Ck).

The fraction N
M of “broken” runs that do not yield properly

separated components (see step 4) and the explained variance
V are also computed. The final number n of embedded
sources corresponds to that with the maximum Iavgq , N

M <
0.3, V > 80%.

B. Experimental protocol and EEG processing

Participants to the experiment were fourteen healthy,
young men. They gave their written informed consent and
the study has been approved by the Local Ethics Committee.
Each participant was shown a pseudo-random mixing of 60
emotionally neutral (objects or landscapes) and 30 unpleasant
(animal threats or human mutilations) images from the Inter-
national Affective Picture System (IAPS [16]). Presentation
of two consecutive unpleasant images was software-denied.
Each image was presented in the central field of view for
1s and separated from the next one by a blank time interval
ranging from two to three seconds. While performing the
task each participant was placed in a quiet and dark room
on a comfortable armchair. During the presentations scalp
EEG signals were acquired with a sampling rate of 500Hz
by electrodes having contact impedance below 5KΩ and
referenced to the FCz potential. Channels were offline re-
referenced to the average potential of the two earlobes (A1
and A2) in order to obtain nearly monopolar recordings.
Movement artifacts and temporary declines of signal quality
were detected by finding sudden signal power variations
[1], [3], [2]. Signals were filtered both with a comb notch
filter (10th order, 50Hz-centered, 3.5Hz-wide) and with a
bandpass one (0.1Hz-20Hz). Each trial corresponded to the
portion of signals from 100ms before to 1000ms after the
onset of the image stimuli, in this way each ERP trial
was composed by 550 time points sampled on 29 channels.
Trials containing ocular artifacted were detected [3], [1]
and removed. We applied ErpICASSO on the concatenated
unpleasant and neutral trials for all subjects.

III. RESULTS

The ICA-based ERP analysis stands on the fact that ERPs
mark stimulus-related serial brain activations whose activities
may temporally overlap. This property enabled us to model
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Embedded sources 2 3 4 5 6 7 8 9
Explained variance (%) 69 79 82 84 87 88 90 91

Iavgq 0.79 0.82 0.84 0.77 0.69 0.65 0.66 0.63
N
M 0.01 0.02 0.03 0.4 0.45 0.5 0.6 0.7

TABLE I
QUALITY INDEXES Iavgq , EXPLAINED VARIANCE OF THE CLUSTERS FRACTION OF “BROKEN” RUNS N

M
VARYING THE NUMBER n OF EXTRACTED

EMBEDDED SOURCES

Fig. 1. Similarity of the component estimates. Panel A shows the
similarity map, that is a scatterplot of the similarities between IC estimates
on bootstrapped trial-to-trial projected in two dimensions by means of the
Curvilinear Component Analysis (CCA [11]) used as a multidimensional
scaling method. Each cluster centroid identifies the component from which
the Independent components are derived. The tighter is the cluster, the
greater the reliability of the related component. In the figure, the red numbers
label the components and the red crosses identify the cluster centroids.
Panel B shows both the dendrogram and the matrix of similarities of the
component replicates. Clusters in the dendrogram are matched to the blocks
within the matrix and labeled according to the similarity map.

ERPs as the sum of temporally-independent components aris-
ing from distinct, spatially-fixed, brain sources. ErpICASSO
bases the component extraction on a ICA approach that
estimates a demixing matrix W to transform trials data into
independent components. The present analysis stands on the
assumptions that all subjects have the same brain responses,
and that arousal and valence of images modulate the time
course of components but do not affect the location of the
sources. Under these assumptions, the analysis is at a group-
level: trials from all the subjects related to both neutral
and unpleasant images were used to perform a unique,
group level extraction of common brain sources. ErpICASSO
not only yielded component estimates but also provided a
reliability measure of each component by means of a quality
index Q [11]. The quality index Q is based on the fact that
robust components do not change while varying the specific
dataset of trials. Accordingly, using statistical techniques
belonging to bootstrapping approaches [10], ErpICASSO
generates a replicate of each component from different sam-
ples of trials. In the case of robust components, the similarity
between replicates is expected to be high for the replicates of
the same component and low between replicates of different
ones. We determined the number of embedded sources by
using the criteria proposed in the methods section. Table 1

Fig. 2. Best Activity Templates (BATs) with statistics and activation
map. The figure shows the sheafs of the activity templates (ATs), which
are originated from the individual FastICA replicates that belong to each
cluster. The sheafs were derived from the bootstrapping procedure within
ErpICASSO and enable the estimation of IC confidence intervals. The red
sheaf refers to the unpleasant responses, and the blue one to the neutral ones.
Among ATs, the two BATs have been highlighted with thick lines. On the
right of each plot, the figure also shows the correspondent activation map.
Unpleasant and neutral BATs of each component share by construction the
same activation map. The p-value time course below each plot indicates the
intervals of significant differences between unpleasant and neutral BATs. P-
values derived from comparing the two sheafs during each time of sampling
(paired t test). The quality index of components 1, 2, 3, and 4 was 0.83,
0.82, 0.78 and 0.85, respectively.
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shows the mean quality indexes, the explained variance and
the fraction of components not correctly parsed into different
clusters as a function of the selected n sources. We found
a quality maximum for n = 4 (82% of the ERPs variance
explained) which suggested to use 4 sources to model ERPs.
For these four components, we obtained graphs of similarities
between component replicates with well-defined clusters.

In figure 1 each IC replicate is plotted as a point on a two
dimensions space: the IC location on this space is derived
by a procedure that approximates the original dissimilarities
between replicates by Euclidean distances in two dimensions.
The centroid of each cluster is indicated by a red cross and
corresponds to the best IC replicate. Figure 2 shows the
topographic distribution of each activity component, with the
BATs (thick lines), putatively different between unpleasants
and neutrals. Indeed, as indicated by the sheaves of thin lines
of the ATs and by the time-course of p-values obtained by
testing the significance of differences, each BAT highlighted
significant differences between unpleasants and neutrals at
particular latencies.

DISCUSSION

In this work we present for the first time ErpICASSO [3],
which modifies a data-driven approach named ICASSO [11],
[22], for the treatment of ERP trials. ICASSO combines a
bootstrapping approach and CCA projection [9] to provide a
reliability estimate of the ICA extraction. ErpICASSO on the
other hand takes into account the fact that the statistical unit
is the trial instead of the time point, thus it is based on a
trial-to-trial bootstrapping procedure. ErpICASSO provides
the user with an estimation of the number of embedded
sources by computing a quality index of each estimate
and by examining the explained variance. Also it improves
the ICASSO clustering step by applying CCA projection
only on independent components which are correctly parsed
into different clusters. This enabled to discard outliers and
to better estimate each cluster centroid. Such confidence
measures enable the user to determine not only the quality
of data available but also whether the number of ERP trials
available is sufficient for the analysis (which incidentally is
another open issue in ICA approaches). To date none of the
ICA and BSS methods available specifically address all these
issues.

ErpICASSO has been applied on ERPs recorded from 14
subjects presented with unpleasant and neutral pictures. In
this work the use of ErpICASSO allowed the separation
of potentials putatively related to different systems and/or
responsive to different conditions. Moreover it enabled us
to identify the primary sources of the ERPs and allowed a
data dimensionality reduction from 29 EEG scalp channels
to 4 independent components that were able to explain most
of the data variance. As a plus, the activity templates were
extracted by ErpICASSO with confidence intervals, which
enabled a comparison between conditions. Next steps in
the development of the method will include validation on
simulated data and a thorough study of its stability and
performance varying the number of trials available for the

analysis. We hope that ErpICASSO will provide the scientific
community with more control over ICA decompositions and
will constitute a useful tool not only in ERP analysis but also
whenever dealing with trials recorded in different conditions.
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