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Abstract— Accelerometers, whether in smart phones or 

wearable physiological monitoring systems are becoming 

widely used to identify movement and activities of free living 

individuals. Although there has been much work in applying 

computationally intensive methods to this problem, this paper 

focuses on developing a real-time gait analysis approach that is 

intuitive, requires no individual calibration, can be extended to 

complex gait analysis, and can readily be adopted by 

ambulatory physiological monitors for use in real time. Chest-

mounted tri-axial accelerometry data were collected from sixty-

one male U.S. Army Ranger candidates engaged in an 8 or 12 

mile loaded (35 Kg packs) timed road march. The pace of the 

road march was such that volunteers needed to both walk and 

run.  To provide intuitive features we examined the periodic 

patterns generated from 4s periods of movement from the 

vertical and longitudinal accelerometer axes. Applying the 

“eigenfaces” face recognition approach we used Principal 

Components Analysis to find a single basis vector from 10% of 

the data (n=6) that could distinguish patterns of walk and run 

with a classification rate of 95% and 90% (n=55) respectively. 

Because these movement features are based on a gridded 

frequency count, the method is applicable for use by body-worn 

microprocessors. 

I. INTRODUCTION 

CCELEROMETERS, whether in smart phones [1, 2] or 

wearable data logging systems [3, 4, 5] are becoming a 

foundation sensor for activity classification systems. 

Reviews by Godfrey et al. [6], Preece et al. [7], and 

Kavanagh and Menz [8] suggest current approaches tend to 

follow a standard formula: Segment the data, derive features 

(mostly frequency domain based), and use these features to 

 
 

C. Clements, is with the U.S. Army Research Institute of Environmental 
Medicine, Natick, MA 01760 USA. 508-233-6274, 

Cynthia.clements@us.army.mil. 

M. Buller is with the U.S. Army Research Institute of Environmental 
Medicine, Natick, MA 01760 USA and the Computer Science Department 

at Brown University Providence RI. 

A. Welles, is with the U.S. Army Research Institute of Environmental 
Medicine, Natick, MA 01760 USA. 

W. Tharion, is with the U.S. Army Research Institute of Environmental 

Medicine, Natick, MA 01760 USA. 
The opinions or assertions contained herein are the private views of the 

authors and are not to be construed as official or as reflecting the views of 

the Army or the Department of Defense. The investigators have adhered to 
the policies for protection of human subjects as prescribed in Army 

Regulation 70-25, and the research was conducted in adherence with the 

provisions of 32 CFR Part 219. Citations of commercial organizations and 
trade names in this report do not constitute an official Department of the 

Army endorsement or approval of the products or services of these 

organizations. 
. 

develop a classification algorithm using a variety of 

classification approaches such as support vector machines, 

neural networks, and k-nearest neighbors. The derived 

features of these approaches are often not intuitive, require 

individual calibration, and require post-processing on 

computationally capable platforms.  

With the development of recent ambulatory physiological 

status monitoring systems (e.g. Equivital EQ-02, Hidalgo 

Ltd., Cambridge UK, and BioHarness Zephyr Inc, 

Annapolis, MD) accelerometry is a promising additional tool 

in the determination of fatigue and thermal work strain in 

teams of emergency workers. Anecdotal evidence as early as 

1877 from Company A of the 10th Cavalry describes 

dehydrated and heat stressed soldiers as exhibiting a 

“tottering gait” [9]. More recently, Goldman [10] lists 

unstable gait as a symptom of heat exhaustion. Patterns of 

acceleration associated with cyclical trunk movement during 

walking have been used to create indices of gait smoothness 

[11] and to distinguish between elderly individuals with and 

without gait stability problems by using trunk-mounted 

accelerometers [12].  

Examining the temporal relationships between 

acceleration channels, distinct periodic patterns can be seen. 

Figure 1 shows the vertical axis and longitudinal axis of a 

trunk mounted tri-axial accelerometer plotted over a 4 

second time frame during both walking and running. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Patterns of movement: vertical vs. longitudinal accelerations from 

a tri-axial chest mounted accelerometer shown over a 4s time frame during 

periods of (A) walking and (B) running. 

 

 

These plots suggest that there is a distinct difference in 

gait between these two activities. Turk and Pentland [13, 14] 

demonstrated that complex images of faces could be broken 

down by the use of Principal Components Analysis (PCA) 

into components representing significant facial 
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characteristics that can be used for facial recognition. 

Similarly, our goal was to demonstrate that accelerometry 

signatures could be broken down into components that 

represent major characteristics of gait such as walk-run, load 

carriage, and wobble as examples. The specific aim of this 

paper was to demonstrate that this approach can break 

movement signatures into major components, the first of 

which can distinguish between walk and run. Our motivation 

for this paper was to develop a real-time gait analysis 

method that is intuitive, requires no individual calibration, 

can be extended to complex gait analysis, and can readily be 

adopted by ambulatory physiological monitors for use in real 

time.   

II. METHODS 

A. Subjects 

Participants were 61 students enrolled in the Ranger 

Training Brigade’s (RTB’s) qualifying course.  The two 

month course includes various qualifying events, one of 

which is a timed road march held on the 4
th

 day.  Volunteers 

were required to complete an 8 mile road march in 2 hours 

10 minutes (Summer) or a 12 mile road march in 3 hours 15 

minutes (Spring and Winter) to remain in the RTB 

qualifying course.  Descriptive statistics are means + 

standard deviations. Volunteers were relatively homogenous 

(Age: 25 + 4 yrs; Ht: 175 + 5 cm; Wt: 69 + 8 kg; body fat 15 

+ 4%). During the road march they carried 17.8 + 1.8 kg. 

B. Equipment 

Acceleration data were collected at 25.6 Hz using the 

Equivital EQ-01 (Hidalgo, Cambridge UK) physiological 

status monitor centered on the chest using a 3-axis micro 

electro-mechanical systems (MEMS) based accelerometer ± 

3 g. Global Positioning System (GPS) data were collected on 

Fortrex 101 wrist watches (Garmin, Olathe, KS). 

C. Event 

The required average pace of 16 min/mile was such that 

for most volunteers this represented a pace between 

“comfortable” walking and “comfortable” running.  By 

“comfortable” we mean a speed of walk or run that during 

unloaded movement would be the preferred walk or run 

speed. Walking or running at a “non-preferred” pace can be 

less efficient [16, 17].  Instead of walking at this pace most 

volunteers chose to alternate between a “comfortable” 

walking pace and a “comfortable” jog or run. Figure 2 shows 

an example of a typical histogram of movement speeds from 

one volunteer for the entire event.  Time to complete the 

road march was 3:03:11 + 0: 12:27 (hr:min:sec), and 3:07:36 

+ 0:06:28 for the 12-mile Winter and Spring marches 

respectively, and 1:59:19 + 0:07:45 for the 8-mile Summer 

march. These road movements were very physically 

demanding given load, and the required pace. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 2. Histogram of movement speeds for one subject obtained from the 

GPS, showing the typical bi-model distribution between walking and 

running speeds. 

 

D. Walk-Run Ground Truth 

GPS location data were available for approximately 50% 

of the participants, and were collected every 15s. Since we 

wanted to use as many participants as possible and the 15s 

GPS data did not always accurately label the 4s periods, we 

chose to use a vertical acceleration threshold to identify each 

movement. In order to do this we determined a participant’s 

individual vertical acceleration threshold based on known 

periods of walk and run identified by the GPS. A segment 

was classified as a run if this threshold was exceeded 

repeatedly.  For a subset of 13 participants, we demonstrated 

that this threshold approach matched both the 1 minute GPS 

speeds and a frequency power content threshold derived for 

each subject for walk and run from a Fast Fourier Transform 

(FFT) of the vertical accelerations data. Figure 3, shows a 

spectrogram containing data for the entire road march. Red 

shows frequencies containing more power. The figure 

clearly shows the power differences during periods of walk 

(~1Hz) and run (~1.5Hz).  

   

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Spectrogram from FFT of vertical axis data for one participant. 

Walks have high power at 1Hz and runs high power at 1.5Hz. Densities 

above 1.5Hz appear to reflect walk-run harmonics. Red shows more power, 

yellow less. 

 

E. Preprocessing 

The vertical and longitudinal accelerations were chosen 

for this analysis as these components provided the greatest 

amount of variability during the loaded walk and run 

segments. The data were segmented into periods of 4s as a 

way to capture approximately two full step cycles. Each 4s 
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segment was normalized to zero mean (by subtracting the 

mean of every 4s period) and unit variance. To avoid 

principal components being found based upon the phase of 

step accelerations, data from the vertical and longitudinal 

axes were binned into a 10 x 10 matrix. Our movement 

signature was then comprised of the frequency counts within 

each bin. Figure 4 shows an intensity plot of these frequency 

counts derived from the acceleration signals shown in the 

examples from Figure 1, with blue showing 0 counts to red 

showing the most counts. 

 

 

 

 

 

 

 

 

 
 

Fig. 4. Patterns of movement in normalized gridded form. Intensity plot  

of frequency counts of binned accelerometry data. Vertical vs. longitudinal 

accelerations from a tri-axial chest mounted accelerometer shown over a 4s 

time frame during periods of (A) walking and (B) running. 

F. PCA and Likelihood Model 

To train our model we chose data from two volunteers at 

random from each of our three data collections (N=6, 10% 

of our population). The remaining participants (N=55, 90%) 

were used as a hold-out sample for validation. Ten-fold 

cross validation was used to ensure that our random 

selection of training participants did not unduly bias our 

model either positively or negatively. An equal number of 

run and walk segments were chosen at random from each 

training subject. Each movement segment (10x10 matrix) 

was flattened to a column vector (size = 100) and 

concatenated into a 100 x N (training segments) matrix X. 

Our goal was to develop a lower dimensional representation 

of each movement segment and from this develop a 

classification model for walk and run based upon the 

assumption that each class can be represented by a 

multivariate Gaussian probability density function.  

To reduce the number of dimensions in our data we used 

Principal Component Analysis (PCA) [e.g. 18]. PCA 

determines a set of orthogonal basis vectors that allow us to 

represent the gait signature in a lower dimensional space. 

PCA solves the eignevalue problem: 

 

                      (1) 

 

Where Λ is a diagonal matrix of eigenvalues, Φ is the 

eigenvector matrix of training data (X) covariance matrix Σ. 

The eigenvector basis vectors are ordered such that the first 

basis vector accounts for the most variance in the data and so 

on. To represent a 4s signature in lower dimensions the 

original signature is mapped to low dimensions using a 

subset of the basis vectors determined by PCA thus: 
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Where the vector y is the representation of the movement 

signature in low dimensional space;  ̃     ̅, where x is a 

movement segment column vector and  ̅ is the mean of all 

the training data; and    is a sub-matrix of the eigenvector 

matrix.  

We assume that both walk and run classes in the low 

dimensional space can be represented by multivariate 

Gaussian probability density functions where the mean and 

covariance are learned from the training data mapped into 

low dimensional space. Thus, the likelihood that a given 

movement signature is in class Ω is given by: 
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Movement signatures are classified based on the highest 

probability of class membership. 

III. RESULTS 

Figure 5 shows the mean run and walk gridded movement 

signatures from the training data, along with the first four 

basis vectors found from PCA. The first four basis vectors 

account for 33, 51, 62 and 70% of the cumulative variance 

respectively.  

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Mean walk (A), mean run (B) gridded movement segments, and 

the first four basis vectors (C – F) from PCA shown as temperature plots. 

 

Table 1 shows the classification rate for walks and runs 

using 1 to 4 basis vectors. 

 
TABLE 1 

CLASSIFICATION RATE 

 Correct Classification (%) 
 

# Basis. 
Walk 

(N=122303) 
Run 

(N=8274) 
1. 95.33 89.90 
2. 96.45 88.42 
3. 96.42 88.45 
4. 97.52 82.26 

 

Using more than one basis for the classification model 

provides little gain over using a single basis vector which 

correctly classifies over 95% of walks and 90% of the runs. 

This suggests that the first principal component separates 
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walk and run periods while the other principal components 

likely capture other features of movement. Classification 

errors occur across all participants and are not 

disproportionally due to any one group or volunteer. 

Median classification rates for walk and run across the 

other cross validation models were 93 and 95% respectively. 

The mean likelihood for correct classifications (0.156) is 

significantly different from incorrect classifications 

(0.00049), p<0.05. 

IV. DISCUSSION 

Our approach has demonstrated that a walk-run 

classification can be learned from a small number of 

participants (N=6) and generalized to a much larger number 

of participants (N=55) without the need for any calibration.  

The current model can only classify a movement segment 

as walk or run, and is forced to identify each movement as 

one of these two choices. For the majority of our 

misclassifications the likelihood of being either a walk or 

run is low. In these cases we suspect that the dichotomy of 

walk and run is an oversimplification. During the road 

march there were other segments of movement such as 

transitions (walk to run, run to walk), rests, stumbles, and 

jumps. This process did not take into account these 

possibilities. 

Using only one dimension to differentiate between walk 

and run, our approach is viable for adoption on 

microprocessors and ambulatory physiological monitors. For 

each 4s segment the method needs the movement segment 

histogram be constructed, requiring the storage of only 100 

integers. This histogram is then mapped to low dimensional 

space by computing the dot product between the histogram 

(as a vector) and one pre-stored eigenvector. Individual 

likelihoods can be extracted from a lookup table or log-

likelihoods computed instead.  

The fact that only one eigenvector dimension is needed to 

differentiate amongst walk and run, suggests that other 

elements of ambulation can also be identified in other PCA 

eigenvectors. For example components such as sway or 

wobble perhaps indicating fatigue or thermal work strain 

would ideally be identified. Future work includes collecting 

data sets where fatigue and thermal work strain are 

incorporated in the experimental design.  

V. CONCLUSION 

Our method is computationally very simple and can be 

readily used by microprocessors in ambulatory monitoring 

systems. We were able to extract movement signatures that 

intuitively show movement patterns in accelerometry data. A 

movement model was learned from only six subjects and 

then applied successfully to over 55 subjects without any 

individual calibration with >95% accuracy.  We conclude 

that this approach holds promise for more complex real time 

gait analysis.  
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