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Abstract—A major challenge in controlling multiple-input
multiple output functional electrical stimulation systems is
the large amount of time required to identify a workable
system model due to the high dimensionality of the space of
inputs. To address this challenge we are exploring optimal
methods to sample the input space. In this paper we present
two methods for optimally sampling isometric muscle force
recruitment curves. One method maximizes the information
about the recruitment curve parameters, and the second method
minimizes the average variance of the predicted output force.
We compared these methods to two previously-used methods
in simulation. The simulation model was identified from re-
cruitment data collected during experiments with a human
subject with a high spinal cord injury. The optimal sampling
methods on average produced estimates of the output force
with less error than the two previously-used methods. The
optimal sampling methods require fewer system identification
experiments to identify models with similar output prediction
accuracy.

I. INTRODUCTION

Functional electrical stimulation (FES) is a strategy to

restore lost functions to persons with paralysis. Many tasks,

such of reaching motions of the arm, require using a con-

tinuous range of muscle force. A model of the relationship

between the stimulation inputs to the muscle and the resulting

force output of the muscle is critical in designing controllers

for these tasks. The isometric recruitment curve is often used

to represent the stimulation input/force output relationship

and is valuable in FES controller design.

Methods for identifying the recruitment curve have been

previously studied [1]. The simplest and most used method

is the steady-state step response method [1]. For the steady-

state step response method, a constant input, usually a

stimulation amplitude or pulse width, is applied, and the

output is averaged after it reaches steady state. Inputs are

selected evenly over the domain of possible inputs. When

ample experiment time exists the recruitment curve can be

sampled at many input levels several times each to estimate

the mean and variance of the force output at each input level.
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Densely sampling the input space for FES tasks requiring

coordination of multiple muscles is infeasible. Experiments

with FES in human subjects are often limited by time and

human fatigue. Multi-muscle tasks often require identifying

recruitment curves, muscle dynamics, and skeletal dynamics.

Each addition of complexity adds extra dimensions to the

input and state space of the FES system to explore. To save

time and effort in experiments and to decrease errors in

control tasks we are examining optimal methods to sample

recruitment curves as an alternative to dense sampling.

Optimal sampling methods are well-studied for functions

that are similar to the sigmoid functions used to model re-

cruitment curves [2]. These methods are often called optimal

experiment designs. Some examples include psychometric

functions in two-alternative forced-choice experiments, dose-

response curves for medicines, and reliability curves in

engineering.

In this paper we apply two well-known methods from

optimal experiment design [3] to the problem of sampling

recruitment curves and compare them to two previously-used

sampling methods. We compare the methods in a simulation

based on recruitment curves identified for a human subject

with a high spinal cord injury. The first optimal method

minimizes the variance of the parameters of the recruitment

curve model by choosing inputs that maximize information

about the parameters. The second optimal method mini-

mizes the average variance of the predicted outputs of the

recruitment curve model. The first previously-used method

evenly samples the input domain. The second previously-

used method [4], bisects adjacent pairs of previous inputs.

The next input is the mean of the pair of adjacent inputs

with the largest difference in output.

To our knowledge, this is the first investigation of optimal

experiment designs for the sampling of muscle recruitment

curves. Because we are motivated by limited experiment time

for identifying human FES systems, the goal of this study

is to determine if the optimal sampling methods produce

recruitment curve estimates with less output prediction er-

ror and variance than those produced with previously-used

sampling methods for small numbers of experiments.

II. METHODS

A. Recruitment Curve Model

We model the recruitment curve with a sigmoid function

f =
a

1 + eb(c−u)
−

a

1 + ebc
, (1)

where u is the stimulation input, typically a stimulation pulse

width or amplitude, f is the force output of the muscle,
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a is the maximum output of the sigmoid function, b is

proportional to the slope of the sigmoid function at 50%

of the maximum output, and c is the input at which the

sigmoid function outputs 50% of its maximum output. The

second term on the right-hand side is an offset term that

forces the output to be zero when the input is zero.

The goal is to identify the parameters in (1) by doing

experiments with a simulated FES system. A single data

point consists of applying one input to the system and

measuring the output. A series of data points defines an

experiment design. The size of an experiment design is the

number of data points making up the design. By sampling

the domain of the input u, and measuring the resulting

output f , we estimate the parameters, a, b, and c using

maximum likelihood estimation (MLE). Having computed

the best estimate of the parameters, we also estimate the

force output f(u), and its variance σ2
f (u), at any input u.

B. Sampling Methods

We use four experiment design methods for sampling

the inputs to estimate the parameters in (1). The first two

methods, which we call even and bisection, do not explicitly

optimize anything. The third and fourth methods, called D-

optimal and V-optimal in optimal experiment design litera-

ture [3], explicitly minimize objective functions.

The even method samples the recruitment curve at evenly-

spaced levels in the domain of inputs. The entire even ex-

periment design is determined before any experiment design

sequence begins. We compute the MLE of the parameters

after all data points of an even design are collected.

The bisection method [4] first gathers three data points:

one at a low input level, one at a middle input level, and one

at a high input level. The difference in force output between

the low and middle inputs and the difference in force output

between middle and high inputs are compared. The pair of

adjacent inputs with the largest output difference is bisected,

meaning that the mean of those inputs becomes the input for

the next experiment. Each subsequent input is the mean of

the adjacent previous inputs that have the largest difference in

muscle force output. We compute the MLE of the parameters

after all data points in a bisection design are collected.

The D-optimal method determines the input of the next

data point or vector of inputs for the next series of data

points by solving

u
∗ = argmin

ũ

− log |M(ũ,U)|, (2)

where M ∈ R
3×3 is the information matrix that depends

both on all previous inputs U, and the next candidate input

or vector of inputs ũ, which is the variable over which to

optimize. The information matrix is computed by

M = F TF, (3)

where F is the parameter sensitivity matrix

F =




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, (4)

and ui is the input of the i
th data point of the n total previous

data points. This method is called D-optimal because it maxi-

mizes the determinant of the information matrix by selecting

the inputs where the parameters are most sensitive. It is

equivalent to minimizing the variance/covariance ellipsoid

of the model parameters.

The V-optimal method determines the next input or vector

of inputs by minimizing the predicted variance of the output

integrated over the entire domain of the stimulation input,

u
∗ = argmin

ũ

∫

U

σ2
f (u, ũ,U)du. (5)

The predicted variance σ2
f , is

σ2
f (u, ũ,U) = F T

1 (u)M
−1(ũ,U)F T

1 (u), (6)

where F1(u) is a vector representing F for a single input u.

Implementing the D-optimal and V-optimal designs re-

quires prior knowledge of the model parameters. Because (1)

is nonlinear in the parameters, its derivatives, which show up

in the objective functions to be minimized, are functions of

the parameters themselves.

To determine the importance of having good prior esti-

mates of the model parameters in computing optimal designs

we compare estimates of recruitment curves using two pro-

cedures to find the initial four inputs required to solve for the

parameters of (1) and estimate the variance of the output. The

first initialization procedure assumes perfect knowledge of

the real parameters by using the parameters of the simulation

model. Using these parameters we solve (2) in the D-optimal

method and (5) in the V-optimal method to find the first four

inputs. The second procedure assumes no knowledge of the

parameters and uses the bisection method to determine the

inputs for the first four data points.

Both the D-optimal and V-optimal designs are sequentially

computed. After collecting the first four data points we

compute the MLE of the parameters and use these new

parameters to solve (2) or (5) for the next input, collect the

next data points, and compute new parameter estimates. The

collections of all subsequent data points proceeds similarly.

C. Evaluating the Sampling Methods

To test the relative ability of the four experiment design

methods to reduce both the error and variance of the output

predictions of the identified models we use a simulation

model,

f =
a

1 + eb(c−u)
−

a

1 + ebc
+N(0, σ2). (7)

The simulation model was identified previously for nine

different electrically stimulated muscle units of a human

subject who sustained a hemisection of the spinal cord at
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the C1-C2 level [5]. The subject has surgically implanted

electrodes that can stimulate various nerves and muscles used

to move the arm. We refer to a muscle unit as either an

individual muscle or a group of muscles that contract when

a specific nerve is stimulated. Note that the only difference

between (1) and (7) is the addition of normally-distributed

noise with variance σ2 in (7). The model assumes that the

noise does not vary with stimulation level for electrically

stimulated muscles [6]. The values of the parameters of (7)

varied across the nine muscle units.

Using each of the four experiment design methods we

determined a sequence of stimulation inputs and randomly

drew force outputs from (7) given the inputs. We ran ex-

periment designs of increasing size, starting with four data

points and ending with twelve data points per experiment

design. For each muscle unit we used the four experiment

design methods 500 times for each size experiment design.

The four experiment design methods are scored as follows.

We treat the mean output of the simulation model at each

stimulation input as the ground truth. The bias, defined as

the difference between the output predicted by the identified

model and the mean output of the simulation model, is

computed at 1% increments. For a given trial the RMS bias

over all the stimulation inputs is computed. The variance

is computed at the 1% stimulation level increments and

averaged. We take the square root of the average variance.

For each size experiment design and each experiment design

method there were 500 measures of the RMS bias and square

root of the average variance, one for each random trial. We

use the median of the 500 measures to score each design

method for each experiment design size. The median is used

because the variance can be extremely high for some trials

with low experiment design size. With large outliers, the

median represents the central tendency better than the mean.

The MATLAB R© function fmincon()was used to solve

for the MLE of the parameters of (1) and the D-optimal and

V-optimal experiment inputs as in (2) and (5).

III. RESULTS

When accurate prior knowledge of the parameters of

the recruitment curve model was assumed, the D-optimal

and V-optimal experiment designs yielded recruitment curve

estimates with less bias than did the even and bisection

experiment designs (Fig. 1). For seven of the nine muscle

units the D-optimal and V-optimal designs produced less-

biased estimates for every experiment design size. For the

other two muscle units either the bisection or even design

performed as well in terms of bias as the D-optimal or V-

optimal for larger experiment designs.

When no prior knowledge of the parameters was assumed

all methods yielded similar bias for small experiment de-

signs, but the D-optimal and V-optimal methods yielded

lower bias than the even and bisection methods for designs

with more experiments (Fig. 1). With no knowledge of the

real parameters, the first several experiments were subop-

timal for all methods. With new experiments the informa-

tion about the parameters increased, and the subsequent D-
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Fig. 1. RMS bias vs. experiment design size for the simulated radial
nerve muscle unit. The D-optimal and V-optimal methods are displayed
both when prior knowledge of the parameters was available (w/prior) and
when no prior knowledge was available (wo/prior). Markers for a size four
experiment design are not included for D-optimal wo/prior and V-optimal
wo/prior because they are identical to the bisection method.

optimal and V-optimal experiments were optimal for the up-

dated parameter estimates and yielded less-biased estimates

of the muscle force output.

The four experiment designs resulted in different sam-

pling of the input space. The even design samples the input

space evenly (Fig. 2(a)). The bisection design attempts to

sample the output space evenly (Fig. 2(b)). The even and

bisection designs run one experiment at several unique input

levels. The D-optimal and V-optimal designs run multiple

experiments in clusters near the three inputs where there is

the most information about the parameters of the recruitment

curve model, which is where the derivatives of the parame-

ters are highest (Fig. 2(c)-(d)). The information matrix M ,

which is part of both the D-optimal and V-optimal objective

functions, includes the parameter derivatives. The derivatives

are highest at 100% stimulation for the magnitude parameter

a, and at just below and above 50% of the maximum output

for the combination of the slope parameter b, and the 50%

of maximum output parameter c. Note that the sequential

experiment design updates the estimate of the parameters and

the optimal experiment after each experiment. The result is

designs with three clusters of inputs rather than three inputs

exactly repeated multiple times.

Repeatedly placing inputs at the most sensitive stimulation

levels, as the D-optimal and V-optimal designs do, reduces

output bias at those inputs, as the data approaches the true

mean with more and more data points. An example of this is

at the 100% input level in Fig. 2. When only one noisy point

was sampled at 100% input, as with bisection (Fig. 2(b)),

there was bias in the estimate of the output at 100% input.

When multiple noisy points were sampled at 100% input,

as with the D-optimal and V-optimal designs, there was less

bias in the estimate of the output at 100% input.

Taking just one sample at a particular input, as the even

and bisection methods do, leads to a biased, one-point

estimate of the output for that input. Bias is magnified when

the outlying data point is at an input where the parameters of
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Fig. 2. Example experiment designs for the (a) even, (b) bisection, (c)
D-optimal, and (d) V-optimal design methods.

the model are most sensitive. An example is seen in Fig. 2(a)

where the outputs at just over 40% and just over 60% input

level are far from the true mean. These two points caused a

particularly biased estimate of the recruitment curve.

There was no evidence to suggest that any of the four

design methods was superior in reducing average variance

(Fig. 3). This was true for all nine simulated muscle units.

The output variance of the simulation model does not vary

with input, so only a few experiments are required to estimate

the average variance no matter what experiment design

method is used. One would expect that the V-optimal design,

which minimizes the integral of the output variance, would

be superior in reducing average variance. We used a V-

optimal design that minimized variance over the entire input

space rather than in a particular area of input space. When

changing the V-optimal cost function to minimize variance in

a specific range of inputs, the estimate of the output variance

in this range was least for the V-optimal design and greater

for the other designs.

IV. DISCUSSION

This study aimed to determine if using optimal sam-

pling methods decreases bias and variance in estimates of

isometric muscle force recruitment curves. By simulating

experiments with four different design methods 500 times

for each experiment design size we showed that the bias in

estimating recruitment curves was smallest for the optimal

design methods. The median size of the output variance over

the 500 trials did not depend on the design method.

While our optimal designs were superior in reducing bias

to the standard evenly-spaced design and the previously

used bisection method [4], the benefit of using the optimal

experiment designs, averaged over many simulation trials,

was on the order of 0.1 N (Fig. 1) which is small compared to

an average standard deviation of approximately 0.3 N. It must
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Fig. 3. Square root of the average variance vs. experiment design size for
the simulated suprascapular nerve muscle unit. The solid horizontal black
line is the square root of the variance of the simulation model. Markers for
size four experiment designs are not included for D-optimal wo/prior and
V-optimal wo/prior because they are identical to the bisection method.

also be mentioned that the bias of a particular recruitment

curve estimate given a small set of data points has more to

do with the particular data points rather than the method used

in obtaining them.

Still there are important reasons to use the optimal designs.

The first is that they protect against particularly “bad”

outliers, which are most damaging to predictions used for

control when the data set is small. This can be seen from

the outliers that caused a biased fit with the even design in

Fig. 2(a). So while on average the optimal methods might

not reduce bias very much, they can reduce bias significantly

in the worst case of outliers.

A second reason to further explore optimal designs for

modeling of FES systems for control is that many FES

tasks require multiple muscles acting over multiple joints.

The input space is much larger as the task becomes more

complicated. We show in this paper that optimal designs

decrease bias in predictions of the output when the input

space is one-dimensional. When exploring higher and higher-

dimensional input spaces optimal designs will become more

and more important both in reducing bias and variance.
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