
  

 

Abstract— We sought to determine whether the messages 

conveyed in the spike trains of individual retinal ganglion cells 

are unique or whether, as has been reported for other neurons, 

they depend in some way on a neuron’s state.  Our data show 

convincingly that the messages are unique. 

 

I. INTRODUCTION 

 

A remaining challenge of neuroscience is to unravel the 

neural code [1-5], and the retinal output is an attractive place 

to investigate this problem, because of our deep knowledge 

of the retina’s physiology and the robust techniques available 

to the experimenter for its study.  A particular topic in the 

area of neural coding that has become of interest in recent 

years is the extent to which neurons may be able to switch 

states and adjust their messages to reflect context [6].  This 

phenomenon has been demonstrated experimentally by the 

observation that in some neurons the same stimulus can 

evoke a discrete set of responses, predicated on the internal 

state of the neuron.  Could this apply to signals leaving the 

retina?  To investigate this question we have studied whether 

the message conveyed to the brain by a retinal ganglion cell 

in response to repeated presentations of the same stimulus is 

unique. The fuzzy K-means method was used to evaluate the 

presence of clusters in the responses of individual cells to 

white noise visual stimuli.  Since these broadband stimuli 

encompass the full range that the retina could encounter, one 

would expect that stimulus-evoked state changes would be 

revealed, if they exist.   

 
II. METHODS 

 

A. Data 

 

 The spike trains analyzed were collected by Passaglia and 

Troy [7].  Well-isolated spikes of single cat X and Y retinal 

ganglion cells were recorded from their axons in the optic tract.  

The spike trains used for our analysis were responses to high 

contrast spots or annuli whose luminance was varied according to a 

pseudo-random sequence.  Spike times were recorded to 0.1 ms 

accuracy. The cat viewed the visual stimulus through 4-5 mm 
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artificial pupils.  All animal procedures were approved by the 

Northwestern University IACUC. 

B. Cluster Analysis 

Spike trains were collected from the same cell in 
response to many repeats of the same stimulus and cluster 
analysis performed on the set of trains obtained to determine 
the number of distinct spike patterns they contain. A fuzzy 
K-means algorithm for cluster identification was 
implemented as a program in Matlab. The reliability of the 
program in uncovering patterns was checked against a set of 
artificially generated data sets known to contain multiple 
spike patterns buried in noise.   

Briefly, the method involves the calculation of a 
similarity matrix of the set of spike trains and from this a 
covariance measure, R, determined. R could range from 0 
(spike trains are uncorrelated) to 1 (spike trains are 
identical). High values of R (R > 0.8) indicate that there is 
just one pattern of response. Intermediate values of R suggest 
the potential presence of more than one pattern of response. 
The fuzzy K-means method is used to uncover these patterns 
and sort the set of responses into distinct groups. 

We compared spike trains collected for the same cell to 
repeats of the same stimulus and spike trains collected from 
different cells of the same type to the same stimulus, in some 
cases cells of like type recorded in different animals. 

III. RESULTS 

A.  Testing the Algorithm 

 Figure 1 demonstrates that the clustering algorithm can 

pull out distinct firing patterns from a set of artificial spike 

trains.  The upper panel shows 100 spike trains arrayed on 

top of one another.  Each dot is a spike.  The lower panel 

shows the set of spike trains ordered to reveal three distinct 

patterns after the cluster analysis.  This set was generated to 

have three clusters. A similar analysis was performed on 19 

other artificial spike trains, each with a known number of 

clusters. In all cases, the algorithm revealed the hidden 

clusters. For every case it was impossible through visual 

inspection of the trains in shuffled order (like the upper panel 

of Figure 1) to see any of the hidden patterns of spiking.   

 
. 

 

 

The Uniqueness of the Message in a Retinal Ganglion Cell Spike 

Train and its Implication for Retinal Prostheses* 

John B. Troy, Fernando M. Yrazu, and Christopher L. Passaglia 

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

312978-1-4577-1787-1/12/$26.00 ©2012 IEEE



  

Figure 1.  Fuzzy K-means algorithm reveals three spike patterns. Lower 

panel shows the spike trains in the upper panel ordered to reflect similarity 

of adjacent spike trains 

B. Cluster Analysis of Spike Trains from the Same Cell 

Data from 43 (13 ON-Y, 13 OFF-Y, 12 ON-X and 5 
OFF-X) cells of nine cat experiments were analyzed. The 
average value of R was 0.94, so it is little surprising that we 
found no evidence of more than one cluster in the spike 
trains of any of these cells. Figure 2 illustrates this point well 
for a representative OFF-X cell.  

 

Figure 2. The spike trains of this OFF-X cell contain just one pattern of 
firing.  The top panel shows 25 spike trains in response to the same 
stimulus, arranged in the order in which they were recorded.  The bottom 
panel shows the same 25 panels arranged in order of similarity. 

C. Cluster Analysis for Spike Trains of Different Cells 

To determine how similar are the messages carried by 

different ganglion cells of the same type to the same stimulus 

we performed a similar cluster analysis to that described 

above for spike train records of different cells combined as 

one set of records. We could perform this analysis for 8 cells 

from the same cat and for 15 cells from different cats. Figure 

3 shows a representative example for data assembled from 

three ON-X cells. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The spike trains of three ON-X cells are essentially identical.  The 

top panel shows 75 spike trains in response to the same stimulus, arranged 

in the order in which they were recorded.  The bottom panel shows the 

same 75 panels arranged in order of similarity. 

 

IV. DISCUSSION 

Our results indicate that the responses of cat retinal 

ganglion cells to stimuli are unique, implying that an 

individual retinal ganglion cell does not employ more than 

one state and more than one neural coding scheme.  The 

responses from different cells of the same type are also quite 

stereotyped. These observations are important both for 

simplifying the task of characterizing the retinal output and 

for the development of visual prostheses where the artificial 

stimulation of retinal ganglion cells is needed to mitigate the 

effects of inner retinal degeneration. The transduction of 

visual stimuli into patterns of spike trains is straightforward. 

Recent work [8] has found that biophysical diversity in the 

same neuronal population may endow them with advantages 

in terms of information transmission.  This would not seem 

to be true for well-identified sub-types of retinal ganglion 

cells which show little variation in their information rates 

[this work, 7]. 
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