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The Uniqueness of the Message in a Retinal Ganglion Cell Spike
Train and its Implication for Retinal Prostheses™
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Abstract— We sought to determine whether the messages
conveyed in the spike trains of individual retinal ganglion cells
are unique or whether, as has been reported for other neurons,
they depend in some way on a neuron’s state. Our data show
convincingly that the messages are unique.

I. INTRODUCTION

A remaining challenge of neuroscience is to unravel the
neural code [1-5], and the retinal output is an attractive place
to investigate this problem, because of our deep knowledge
of the retina’s physiology and the robust techniques available
to the experimenter for its study. A particular topic in the
area of neural coding that has become of interest in recent
years is the extent to which neurons may be able to switch
states and adjust their messages to reflect context [6]. This
phenomenon has been demonstrated experimentally by the
observation that in some neurons the same stimulus can
evoke a discrete set of responses, predicated on the internal
state of the neuron. Could this apply to signals leaving the
retina? To investigate this question we have studied whether
the message conveyed to the brain by a retinal ganglion cell
in response to repeated presentations of the same stimulus is
unique. The fuzzy K-means method was used to evaluate the
presence of clusters in the responses of individual cells to
white noise visual stimuli. Since these broadband stimuli
encompass the full range that the retina could encounter, one
would expect that stimulus-evoked state changes would be
revealed, if they exist.

II. METHODS
A. Data

The spike trains analyzed were collected by Passaglia and
Troy [7]. Well-isolated spikes of single cat X and Y retinal
ganglion cells were recorded from their axons in the optic tract.
The spike trains used for our analysis were responses to high
contrast spots or annuli whose luminance was varied according to a
pseudo-random sequence. Spike times were recorded to 0.1 ms
accuracy. The cat viewed the visual stimulus through 4-5 mm
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artificial pupils. All animal procedures were approved by the
Northwestern University IACUC.

B. Cluster Analysis

Spike trains were collected from the same cell in
response to many repeats of the same stimulus and cluster
analysis performed on the set of trains obtained to determine
the number of distinct spike patterns they contain. A fuzzy
K-means algorithm for cluster identification was
implemented as a program in Matlab. The reliability of the
program in uncovering patterns was checked against a set of
artificially generated data sets known to contain multiple
spike patterns buried in noise.

Briefly, the method involves the calculation of a
similarity matrix of the set of spike trains and from this a
covariance measure, R, determined. R could range from 0
(spike trains are uncorrelated) to 1 (spike trains are
identical). High values of R (R > 0.8) indicate that there is
just one pattern of response. Intermediate values of R suggest
the potential presence of more than one pattern of response.
The fuzzy K-means method is used to uncover these patterns
and sort the set of responses into distinct groups.

We compared spike trains collected for the same cell to
repeats of the same stimulus and spike trains collected from
different cells of the same type to the same stimulus, in some
cases cells of like type recorded in different animals.

NI. RESULTS

A. Testing the Algorithm

Figure 1 demonstrates that the clustering algorithm can
pull out distinct firing patterns from a set of artificial spike
trains. The upper panel shows 100 spike trains arrayed on
top of one another. Each dot is a spike. The lower panel
shows the set of spike trains ordered to reveal three distinct
patterns after the cluster analysis. This set was generated to
have three clusters. A similar analysis was performed on 19
other artificial spike trains, each with a known number of
clusters. In all cases, the algorithm revealed the hidden
clusters. For every case it was impossible through visual
inspection of the trains in shuffled order (like the upper panel
of Figure 1) to see any of the hidden patterns of spiking.
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Figure 1. Fuzzy K-means algorithm reveals three spike patterns. Lower
panel shows the spike trains in the upper panel ordered to reflect similarity
of adjacent spike trains

B. Cluster Analysis of Spike Trains from the Same Cell

Data from 43 (13 ON-Y, 13 OFF-Y, 12 ON-X and 5
OFF-X) cells of nine cat experiments were analyzed. The
average value of R was 0.94, so it is little surprising that we
found no evidence of more than one cluster in the spike
trains of any of these cells. Figure 2 illustrates this point well
for a representative OFF-X cell.
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Figure 2. The spike trains of this OFF-X cell contain just one pattern of
firing. The top panel shows 25 spike trains in response to the same
stimulus, arranged in the order in which they were recorded. The bottom
panel shows the same 25 panels arranged in order of similarity.

C. Cluster Analysis for Spike Trains of Different Cells

To determine how similar are the messages carried by
different ganglion cells of the same type to the same stimulus
we performed a similar cluster analysis to that described
above for spike train records of different cells combined as
one set of records. We could perform this analysis for 8 cells
from the same cat and for 15 cells from different cats. Figure
3 shows a representative example for data assembled from
three ON-X cells.

Figure 3. The spike trains of three ON-X cells are essentially identical. The
top panel shows 75 spike trains in response to the same stimulus, arranged
in the order in which they were recorded. The bottom panel shows the
same 75 panels arranged in order of similarity.

IV. DISCUSSION

Our results indicate that the responses of cat retinal
ganglion cells to stimuli are unique, implying that an
individual retinal ganglion cell does not employ more than
one state and more than one neural coding scheme. The
responses from different cells of the same type are also quite
stereotyped. These observations are important both for
simplifying the task of characterizing the retinal output and
for the development of visual prostheses where the artificial
stimulation of retinal ganglion cells is needed to mitigate the
effects of inner retinal degeneration. The transduction of
visual stimuli into patterns of spike trains is straightforward.

Recent work [8] has found that biophysical diversity in the
same neuronal population may endow them with advantages
in terms of information transmission. This would not seem
to be true for well-identified sub-types of retinal ganglion
cells which show little variation in their information rates
[this work, 7].
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