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Abstract— Prosthetic vision provides vision which is reduced
in resolution and dynamic range compared to normal human
vision. This comes about both due to residual damage to
the visual system from the condition that caused vision loss,
and due to limitations of current technology. However, even
with limitations, prosthetic vision may still be able to support
functional performance which is sufficient for tasks which are
key to restoring independent living and quality of life. Here
vision processing can play a key role, ensuring that information
which is critical to the performance of key tasks is available
within the capability of the available prosthetic vision. In this
paper, we frame vision processing for prosthetic vision, highlight
some key areas which present problems in terms of quality of
life, and present examples where vision processing can help
achieve better outcomes.

I. INTRODUCTION

In 1896, d’Arsonval demonstrated inducing “phosphenes
and vertigo” using electrical stimulation, showing the possi-
bility of prosthetic vision by electrical stimulation. Recently,
results are emerging showing possible clinical benefit from
clinical studies from two groups. Humayun et al, [12] re-
ported a best subject result of 1.8 logMAR visual acuity
along with motion discrimination and orientation and mobil-
ity results improved significantly over system off. Zrenner
et. al [24] reported letter reading and a best visual acuity of
1.69 logMAR with a 1500 active microphotodiodes implant.

Recent important results (e.g., [12], [24]) show improved
vision performance for individuals with little or no vision
following the implantation of a prosthetic vision device.
Such results represent a significant step in the emergence
of implantable prosthetic vision - a prosthetic vision which
is stable, and sufficient to show visual results.

The US definition of legal blindness is 20/200 visual acuity
or a visual field of 20 degrees or less,1 which prosthetic
vision is some way from. A key barrier to full restoration is
that normal vision has high acuity, can perceive over a large
field of view, and the dynamic range over which contrasts
can be discerned is large. However, individuals still may
have effective functional abilities despite being legally blind.
Prosthetic vision may also improve quality of life without
restoring normal vision - through supporting key tasks such
as orientation and mobility, face recognition and communi-
cation, and reading. The key role for vision processing in
prosthetic vision is to deliver more effective performance of
tasks that are important to quality of life, given restricted
visual function. Specifically, given a restricted number of
phosphenes, and a restricted dynamic range of levels on
these phosphenes, vision processing must enable key visual
information to be retained in reduced resolution to allow the

1http://www.eeoc.gov/facts/blindness.html

performance of functional tasks. This can be achieved by
extracting key information for particular tasks from incoming
high resolution image streams, then ensuring this is preserved
in the resulting reduced bandwidth prosthetic vision image.

This paper defines vision processing for prosthetic vision,
and its role, particularly in supporting functional vision.
Vision processing for prosthetic vision is complementary to
developments in other aspects of prosthetic vision research.
We also look at the gaps between current prosthetic vision
and the needs of individuals with low vision, and how vision
processing may help facilitate better outcomes.

II. COMPONENTS OF PROSTHETIC VISION

In this paper we are concerned with stimulating im-
plantable visual prosthetic devices.2 Most implantable visual
prosthetic devices perform neural stimulation of the human
visual system, and use some type of electronic photosensors
to recover the luminance of the visual scene. This allows the
possibility for the device to perform some processing of the
incoming visual information. Most implantable stimulating
visual prosthetic devices use electrical stimulation of the
human vision system, beginning with cortical stimulation
in the late 1960s [2]. There has also been optic nerve
stimulation [21], [3], and several methods of retinal stim-
ulation which are generally described by the anatomical
position of the stimulator. This includes epi-retinal (e.g.,
[16], [17]), sub-retinal (e.g., [24] trans-scaleral (e.g., [9]), and
supra-choroidal (e.g., [20]). The major exception to electrical
stimulation is the optogenetic approach, where neurons are
modified so that they become photosensitive [8].

All proposed electrical stimulation devices require some
form of electronic photoreceptive device, mostly this is an
external camera. However, [24] makes use of photodiodes
directly mounted on the implantable stimulator. Both external
camera, and eye resident photodiodes have been shown to
be effective in human trials. Current proposals for visual
prosthetics using optogenetics include an external camera
and a projecting device outside the eye to concentrate light
sufficiently for activation [7]. Most current prosthetic vision
devices include an external camera and a wearable vision
processor outside the body. Although it is more complex to
integrate vision processing with electronic photoreceptors, it
is possible, so vision processing can be incorporated when
there is no external camera.

2We exclude passive devices, e.g., implantable miniature telescope [5].
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III. VISION PROCESSING FOR PROSTHETIC VISION
DEFINITION

Vision processing takes signals from incoming electronic
photosensors, makes some modifications to those signals,
and transmits them to the stimulation device. We propose
here, that in general, vision processing for prosthetic vision
is a mapping from a high resolution, high dynamic range
incoming image which can be captured at high frequency, to
a stimulation device with lower resolution, lower dynamic
range, and potentially lower frequency output. There may
also be the possibility of other sensors, such as range, or
GPS also being used to supplement this information. We
define this relationship as:

φ = f(ψ), (1)

f is a mapping from an input image stream, to a set of
phosphenes, both of which can be described as consisting
of a set of visual fields with two spatial and one temporal
dimension, ψ = ψxt = (Ix, It), φ = φxt = (Px, Pt).

The output image set is spatially discrete, so we may
define: Px as a set of nφ phosphenes in two spatial di-
mensions, Px = {0, 1, ...nφ} (note this is unlikely to be
a regular grid in perceptual space, e.g., see [13]) and, Pt ∈
{0, 1, ...pφ}. The stimulation cycle will be finite, and may not
be synchronous, but let us define this as a discrete output.
Also, for each individual phosphene φi ∈ φxt, the value of
φi is over a restricted range, φi ∈ {0, 1, ..lφ}, where lφ is the
maximum number of discriminable levels of dynamic range
of a phosphene. Note this may vary per phosphene.

By calibration, we may define any incoming camera rig
configuration as a finite set of discrete input image visual
fields (pixels) in two spatial dimensions: thus, Ix is a set
of nψ image visual fields in two spatial dimensions, Ix =
{0, 1, ...nψ}, which may be in a linear grid in input space. If
we consider some finite interval of time, then the visual fields
will be sampled a finite number of times. Let us assume that
each visual field may be treated as taking the same number of
samples during this time, so It ∈ {0, 1, ...pψ}. Further, each
ψxt is discrete over some finite dynamic range of imaged
luminance, therefore we may define ψxt ∈ {0, 1, ..lψ}, where
l is the number of levels of dynamic range. Assume that an
appropriate input device has been chosen so that φ is not
oversampled in any dimension. Then we have nφ ≤ nψ ,
pφ ≤ pψ , and lφ ≤ lψ .

IV. CURRENT LIMITATIONS ON TECHNOLOGIES

The number of phosphenes that can be separately induced
by current generation implantable visual prosthetic devices
is low compared to the resolution in number of pixels of
standard current generation mobile phone cameras. Indeed,
although there are many photoreceptors in normal human vi-
sion, the number of retinal ganglion cells, the axons of which
make up the optic nerve, is low relative to cameras. Within
the limitations of the device, it is generally advantageous to
have more than one measurement of scene luminance per
phosphene as this is more robust to input noise. In general,

for external cameras and current generation prosthetic vision
devices, the number of spatial samples of incoming light
will be substantially greater than the spatial resolution of the
prosthetic vision induced image. That is nφ < nψ . In reports
to date, the number of levels that implantees can reliably
discriminate is at most around 10 [13], [22]. Most electronic
visual sensors have significantly larger dynamic range than
this, so lφ < lψ . In the case of the temporal dimension,
modern cameras can sample the scene quickly, however,
cameras that have a much greater speed than human flicker
fusion tend to be limited to specialist applications, and so
may be less power efficient. [22] presents data that suggests
prediction of sequential events improved after delays of 100
to 200 ms. 5 Hz would be a down-sample from current
camera image streams, however, perhaps better times can be
achieved. Further, the difference is not so large from standard
sensing devices compared to resolution and dynamic range,
so it is less clear there will be significant down-sampling in
the temporal domain.

Thus, we define prosthetic vision processing as a down-
sampling spatially and in dynamic range as per Equation
(1). The task of vision processing is to preserve information
in this down-sampling operation that is important to the
functional abilities of implantees.

V. GAPS TO HUMAN VISION

Human vision has peak foveal sampling of incoming light
of around 120 cycles per degree [23], and has a large field
of view. Sampling is not of uniform high acuity, but, outside
the foveal area reduces logarithmically in resolution [18].
Human vision incorporates fixatiion, which directs the fovea
to areas of interest to allow effective high resolution over a
substantial field of view.

Human vision also effectively has a large dynamic range
over which it can perceive light. By dark and light adaptation
of the retina [1] the eye is able to operate effectively in
bright sunshine into quite dark conditions. Full adaptation
between these conditions can take significant time. In a single
fraction of a second, the dynamic range of light perception is
greatly reduced, however, it is still significant. In comparison,
the approximately 10 levels of distinguishable brightness
demonstrated in current trials of implantable visual prosthetic
devices is greatly limited.

Normal human vision can use binocular disparity to infer
the distance of close objects, and can infer the range of
distant objects through motion over time. The ability to con-
trol locomotion by cues from optical flow, such as centering
and landing, without requiring absolute recovery of depth
information have been well demonstrated [19].

However, even when bilateral implants are available, it
is uncertain whether electrical stimulation will be able to
restore ocular dominance columns which are associated with
depth perception [4]. The performance of depth perception
is closely correlated with visual acuity. For optical flow,
computational models such as spatio-temporal derivatives
and feature tracking critically depend on the precision of
encoding of spatial contrast and so are sensitive to input
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dynamic range and spatial density. Thus, we can expect that
the ability of prosthetic vision to infer depth is impaired
relative to the abilities of normal human vision.

VI. RESULTS FOR VISION PROCESSING IN PROSTHETIC
VISION

We now give some illustrative examples of our work
demonstrating that improved results can be shown by pros-
thetic vision (using a simulation of prosthetic vision) above
what would be expected from the direct functional abilities
of the corresponding prosthetic vision.

A. Visual fixation, face recognition, sign reading

Human vision uses visual fixation to most effectively
utilize the high resolution of the fovea. In prosthetic vision,
given a spatial downs-ample from the input image, one may
digitally zoom (perhaps also optically) to items of interest
such as faces and signs. This allows the whole prosthetic
vision resolution to be devoted to recognition, allowing
vision processing to perform fixation and tracking.

Figure 1 shows that such an effect can help facilitate
recognition of signs, as the result of using a sliding window-
based object detector, using HOG feature descriptors (Dalal
and Triggs [6]). This was trained using a large dataset of
around 20,000 images of Australian pedestrian crossing sign
images and other outdoor scenes as negative examples.3

Figure 1 shows the raw image, and its phosphenized version;
the second row shows the detected window only zoomed
to full size along with its corresponding phosphene image.
More detail can be seen in [11].

Human fixation plays a key role in face and facial ex-
pression recognition, particularly in dynamic scenes. The
effect of face zooming is shown in Figure 2. In the system
implemented, the face is zoomed once selected and tracked
until the user disengages the interaction. This result was
reported in [10].

(a) (b)

(c) (d)

Fig. 1. Automated detection and zooming of signs in prosthetic vision.

3Thanks to Gary Overett of the Automap project for his assistance with
sign detection.

Fig. 2. Comparison of simulated prosthetic vision representation without
face fixation versus with face fixation. Top row: The original high resolution
input image frame at varying distances; Middle row: the phosphenized
images with 35x30 simulated phosphenes; Bottom row: the detected and
zoomed face region.

B. Orientation and Mobility

Given limited dynamic range, the ability to perceive small
trip hazards can be impaired if they are of low contrast,
particularly in the reduced dynamic range of prosthetic
vision. Vision processing may augment the representation
to ensure obstacle visibility from its background despite the
differences in intensity (or depth if depth is represented
on phosphenes instead) being insufficient to appear under
expected quantization.

In [15] we demonstrated a system for finding the ground
plane and ensuring that ground-based obstacles are apparent
in the visual scene. Here, the ground plane was detected in
disparity images taken by a stereo rig mounted on a skate
board helmet and worn by the participant. The approach took
particular care to find boundaries of objects with the ground
plane, including the walls and trip hazards. The scene can be
represented as a depth image to overcome problems of depth
perception in low dynamic range visualizations, and the
contrast of these boundaries was increased, so that potential
trip-hazard obstacles pop-out of the visual scene. Figure 3
shows how a potential trip-hazard obstacle of low contrast
can be difficult to see in a regular simulation of prosthetic
vision, but that using an augmented depth representation it
can be clearly differentiated.

It is necessary to evaluate the performance of vision
processing algorithms for prosthetic vision before deploy-
ment. One way to do this is perform this evaluation using
simulation software with normally sighted participants. For
this purpose, we have developed real-time software that
allows for customization of input image streams and rendered
phosphene streams [14]. This simulated prosthetic vision
software was used to produce the simulated prosthetic vision
images shown in this paper.

VII. CONCLUSION

For any level of visual function that can be provided by
prosthetic vision, the role of vision processing for prosthetic
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 3. The augmented ground-plane and alternative representations of a
visual scene. (a) corridor intensity image (b) disparity image (c) the disparity
image with an augmented ground plane and boundaries (d) the ground plane
mask as recovered. (e), (f) and (g) show phosphene images corresponding
to the intensity, depth, and augmented depth images respectively with 98
phosphenes and low dynamic range. Note the visibility of the trip hazard
obstacle in (g).

vision, is to deliver functional ability that is improved by
ensuring key information for tasks is preserved. We defined
prosthetic vision as a mapping from input visual information
to a stimulated pattern in the human visual system, which
is down-sampled spatially and in dynamic range. Computer
vision techniques may be used to select key information from
incoming image streams, and ensure this is preserved. Exam-
ples of this were given with highlighting obstacles in limited
dynamic range and using detection and tracking techniques
to replace human fixation by zooming to key objects in the
scene, and keeping them steady. This demonstrates a key role
for vision processing in prosthetic vision.
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