
  

 

Abstract— Retinal prostheses for the blind have 

demonstrated the ability to provide the sensation of light in 

otherwise blind individuals. However, visual task performance 

in these patients remains poor relative to someone with normal 

vision. Computer vision algorithms for navigation and object 

detection were evaluated for their ability to improve task 

performance. Blind subjects navigating a mobility course had 

fewer collisions when using a wearable camera system that 

guided them on a safe path. Subjects using a retinal prosthesis 

simulator could locate objects more quickly when an object 

detection algorithm assisted them. Computer vision algorithms 

can assist retinal prosthesis patients and low-vision patients in 

general. 

I. INTRODUCTION 

A retinal prosthesis uses electrical stimulation to restore 
the sensation of vision, in people with retinal degenerative 
disease.

1
 A microelectrode array for patterned stimulation of 

the retina is positioned either on the ganglion cell side of the 
retina (epi-retinal) or in the place vacated by the degenerated 
photoreceptors (subretinal). Sensory substitution devices are 
also being tested, that convert images into tactile or aural 
patterns, which the blind person feels or hears, then 
interprets this sensation to understand the image.

2
,
3
 Both 

prosthetic and substitution devices have an external camera 
and video processing hardware to digitize images. 

Clinical trials of prototype retinal prostheses have 
produced encouraging results. Even with only 60 pixels, 
implant patients with the Argus II retinal prosthesis (Second 
Sight Medical Products, Inc., Sylmar, CA, USA) can 
recognize large letters and have improved mobility.

4
 Other 

studies have shown similar, encouraging results.
5
 However, 

the visual perceptions created by retinal implants are still 
crude relative to natural vision. Thus, it is important to 
consider how to improve the overall experience and abilities 
of these subjects through image processing. 

Image processing for a retinal prosthesis can take two 
forms. One is the real-time conversion of video into a 
stimulus pattern that is then applied to the retina via the 
implanted stimulator. Optimization of this conversion 
process to achieve the best visual performance is critical to 
the success of retinal prosthesis. A second type of image 
processing, which is the topic of this report, is using 
computer vision algorithms to interpret a scene and provide 

 
Research is supported by Telemedicine & Advanced Technology Research 

Center (TATRC), at Fort Detrick, MD under Contract Number:  

W81XWH-10-2-0076 and by the National Science Foundation under Grant 

No. EEC-0310723. J.D. Weiland is with the Doheny Eye 

Institute/University of Southern California. N. Parikh was with the 

University of Southern California and is now with Medtronic, Inc. V. 

Pradeep was with the University of Southern California and is now with 

Microsoft, Inc. G. Medioni is with the University of Southern California. 

 

this interpretation to the user, in the form of visual, aural, or 
tactile cues. Visual information could be communicated 
through the electrode array, aural information via 
headphones, and tactile information via vibration motors. 
Herein, we report on pilot studies of two prototype systems 
which used computer vision algorithms with guiding cues for 
navigation and object detection.  

II. METHODS 

The primary components of navigation system are shown 

in Figure 1. A similar prototype has been reported 

previously.
6
 The stereo camera (Tyzx, Deep Sea V2) 

generates dense 3D maps of the scene similar to a range-

finder. This 3D data is used as input to algorithms that 

perform obstacle detection and compute the shortest and 

safest path through the environment. However, as the camera 

system is mounted on the head, it undergoes significant pitch 

and yaw motions during walking. Furthermore, to guide a 

human subject through the environment, the system must 

have knowledge about the location and orientation of the 

user’s head with respect to the obstacle map. The user’s 

motion should be continually tracked (localization) on a 

global frame of reference, and new obstacles be registered 

into this frame (mapping). The algorithm performs all of 

these functions. An advantage of this simultaneous 

localization and mapping is that the system has memory 

about obstacles present in the vicinity, even when the objects 

are not within the view of the camera. 

If the subject deviates from the safe path (which is 

computed by locating the intersection between direction of 

motion and a line segment on the shortest path), 

corresponding vibration motors (left/right shoulder) are 

activated for cuing a corrective rotation. As a failsafe, if an 

obstacle is present in close proximity (within 1 m), the waist 

motors (right/left) are activated to cue the user to step away 

from it.  

To test navigation system, 9 subjects with varying visual 

impairment conditions were recruited at the Braille Institute 

of Los Angeles. Subjects were instructed on basic operation 

of the system and the vibration motors were manually 

activated to allow subjects to become familiar with the 

sensation created by the motors. An obstacle course was set 

up (figure 1) that the subjects navigated through 10 times. 

Subjects were randomly divided into 3 groups: group 1 used 

the white cane, group 2 used the device and group 3 used the 

cane and device simultaneously. After a month, group 1 and 

group 2 subjects were swapped to ensure that results were 

not biased because of group composition. 
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Figure 1 – Top - Overhead view of an obstacle course used 

for navigation testing. Bottom – The prototype wearable 

system for navigation. 

Object detection system testing used a prosthetic vision 

simulator, described previously.
7
 Briefly, a webcam was 

mounted on a head-worn display (Arrington Research, Inc.). 

The video stream from the webcam was modified using 

custom software and rendered as a simulation of prosthetic 

vision with a controllable format in terms of number of 

pixels active, pixel location, and pixel size. Each pixel 

represented an active electrode of a retinal prosthesis. In 

addition to the grid of active pixels, cuing pixels were placed 

at 8 locations: up, down, left, right, up-left, up-right, down-

left, and down-right. The video stream was simultaneously 

processed by a saliency algorithm that detected the most 

important object in the scene.
8
 Briefly, the saliency algorithm 

detects salient parts of an image, based on color, intensity, 

and orientation versus the background. These algorithms are 

modeled on primate vision. Only areas outside the view of 

the user, but within the view of the camera were processed 

for important objects. The cueing pixels directed the user to 

look in the direction of the most important object. 

Subjects were asked to locate up to three objects on an 

otherwise empty tabletop. Subjects performed the tasks with 

and without cues. 7 normally sighted subjects were enrolled 

for this study. The subjects were provided with simulated 

prosthetic vision in the central diagonal 10 degrees of the 

HMD. Prior to testing, the subjects were allowed to freely 

view object on the table to gain experience with the system. 

Subjects wore a shroud over the HMD to block their 

peripheral vision and were seated at a desk. 1, 2 or 3 objects 

were placed on the desk at a time and the subjects were 

asked to find them using the simulated vision. The only 

objects on the desk were the objects of interest and one 

central reference object. Subjects first performed the task 

with no cues and then with cues. Each subject performed 6 

trials of the 1, 2 and 3 object cases, 3 trials with cues and 3 

trials without cues. The data thus consisted of 18 trials from 

each subject and a total of 126 trials from all subjects for 

both cases. Data was recorded for total head movements in 

the horizontal and vertical directions, the number of errors 

and the time taken to finish the task. 

Figure 2 shows a typical arrangement for the objects for 

this experiment. The round tape roll in the center of the desk 

acted as a starting point and reference for the subjects. The 

subjects were instructed to fixate on the center object, find 

all the objects on the table, then return to the center. In the 

beginning of each trial, to prevent subjects from finding 

objects while trying to find the center starting point, the 

HMD was disabled. The subjects were guided verbally until 

the camera was fixated on the center starting point, and then 

the HMD was enabled. For the no cueing trials, the subjects 

scanned the desk to find the object(s). For the cueing trials, 

the subjects looked at the central reference and were 

provided with directional cues from the algorithm. For the 

cueing trials having more than one object placed on the 

table, the subjects made head movements towards each 

object and came back to the central reference to wait for the 

next directional cue to find the other object(s).  

All human subjects testing was approved the University 

of Southern California Institutional Review Board. 

 
Fig. 2 – Top – yellow box indicates the area processed by 

the saliency algorithm, red box shows the area that is 

pixelized. Bottom – simulated retinal prosthesis pixels 
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III. RESULTS 

Group 3 (cane and device) subjects had no collision in 
any trial. Group 1 had 17 collisions and group 2 totaled 7 
collisions (Figure 3) Thus, fewer collisions occurred when 
using the device. The difference was maintained when 
groups 1 and 2 were swapped. Video recordings were used 
to create ‘heatmaps’ to visualize trajectories adopted by the 
subjects. These heatmaps demonstrated that white cane users 
contacted sides of obstacles and got stuck behind longer 
objects due to the limited sensing range of the cane. 
However, the average Percentage Preferred Walking Speed 
(PPWS) measured for the 3 groups across all trials showed 
that group 1 was fastest followed by group 3; group 2 was 
slowest. Performance with the device-only was slow due to 
limitations of the prototype system and because subjects 
overcompensated when cues were received. In some cases, 
these delays led to disorientation, which was overcome by 
group 3 subjects who also used the cane to maintain a sense 
of direction. 

  

Figure 3 – Number of collisions for groups 1 and 2. 
Group 3 had no collisions 

Figures 4 shows the time in seconds for each trial averaged 
over the 7 subjects for the 1, 2 and 3 object cases 
respectively for both the no cueing and cueing trials. The 
time taken to finish the trials with cues was significantly less 
than the time taken to complete the NC trials (paired t-test, 
p<0.05).  

IV. CONCLUSIONS 

The experiments demonstrate that computer vision 
algorithms for navigation and object detection may benefit 
the visually impaired.  Such algorithms could be used with a 
retinal prosthesis or as a wearable system. In the latter case, 
acceptable human interface hardware will be needed to 
communicate information via either sound or tactile cues.  
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Figure 4: Time in seconds for the 1, 2 and 3 object cases in 

(a), (b) and (c) respectively for both no cueing and cueing 

groups 
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