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Abstract—The field of retinal prosthesis has been steadily 

developing over the last two decades. Despite the many 

obstacles, clinical trials for electronic approaches are in 

progress and already demonstrating some success. 

Optogenetic/optoelectronic retinal prosthesis may prove to 

have even greater capabilities. Although resolutions are now 

moving beyond recognition of simple shapes, it will nevertheless 

be poor compared to normal vision. If we define the aim to be 

to return mobility and natural scene recognition to the patient, 

it is important to maximize the useful visual information we 

attempt to transfer. In this work we highlight a method to 

simplify the scene, perform spatial image compression and a 

pulse coding scheme on the optoelectronic stimulator to 

conserve energy consumption.  

 
Index Terms— retinal prosthesis, optogenetics, visual 

prosthesis, scene enhancement, augmented vision, 

optoelectronics, channelrhodopsin 

I. INTRODUCTION 

he sense of vision is incredibly important to human 

beings. Much of our daily existence from internet 

browsing to navigation presupposes our ability to see. Its 

loss can therefore be devastating. Surgical approaches have 

been developed for optical conditions such as cataracts, and 

drugs are becoming increasingly available for conditions 

such as wet Age-related Macular Degeneration. However, 

genetic disorders of the retina are much more difficult to 

treat. In Retinitis Pigmentosa (RP), defective rod 

photoreceptors cause nightblindness and tunnel vision. As 

the disease progresses, cone photoreceptors become 

inactivated and eventually destroyed. The circuitry of the 

retina is however largely intact [1].  

Despite the successes of cochlear implants, the retina has 

proved to be very challenging to neuroprostheticists. 

Progress therefore has been slow [2, 3]. However with the 

advent of optogenetics in 2003, a new form of 

optogenetic/optoelectronic prosthesis has been 

conceptualized by this team [4] and others. Fundamentally, 

this new approach photosensitizes other cells in the retina 

with a light sensitive ion channel. This has been shown in 

retinal ganglion cells [5], bipolar cells [6]. It also turns out 

that even after the onset of full blindness, many of the 

photoreceptor cells in the central macula, though 

dysfunctional, remain alive. It is thus possible to re-sensitize 

these with photosensitive ion pumps [7]. The main caveat to 

this approach is the requirement for ultra bright light sources 

– typically emitting at 10
6
 cd/m

2
. To this end we have been 

developing high brightness microLED array technology [8] 

which can provide high brightness stimulus at high pulse 

frequencies.  

 
 

The key advantage to optogenetic approaches relate to not 

requiring implantation of electrodes, which degrade, and the 

inherently higher resolution and contrast achievable. In 

particular it is possible to genetically target neural pathways.  

[6], and even re-photosensitize the cone cells.  The key 

engineering caveat is that a very high intensity of light – 

typically 1mW/mm
2
 is required to stimulate the target cells. 

Realistically, perhaps not all of the re-sensitized cells may 

be functional, and those that are exist only in the fovea. As 

such the returned vision may look like that given in Figure 1 

below.  

Given the intensity requirements and the non-perfect 

returned vision, we need to create a scheme which 

maximizes the useful transfer of information while 

minimizing energy consumption. Previously, we have shown 

that effective contrast enhancement algorithms such as 

cartoonization and TRON can improve visual recognition in 

low-vision patients with retinal degenerative disorders [9]. 

For those with tunnel vision, we have also demonstrated a 

non-linearly shrinking approach [10] to spatially compress 

the non important features of the visual scene, increasing the 

effective field of view.  

 

Figure 1 optogenetic vision. (left) original scene (right) simulated 

optogenetic vision. Not all cone cells will have returned function so there 

will be a scatter. Also, as only the foveal cones will remain, there will be a 
tunnel vision. 

 In this paper we combine cartoonization to improve 

effective contrast, with our spatial scene compression 

algorithm and a power management method to limit the 

power consumed by the micro-LED arrays[11].  

II. PROCESSING ALGORITHMS 

The visual processing is divided into three main parts 

described in the flow chart in Figure 2:  

1. Scene simplification: to reduce the non-important 

features and increase effective contrast.  

2. Spatial scene compression: To shrink the scene while 

maintaining the important components to fit more 

information into the visual tunnel.  

3. MicroLED pulse coding: To ensure smoothing of the 
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power consumption and limit the total power consumed.  

 

Figure 2 System flowchart. It shows the main stages of the approach 

for stimulating re-sensitized Cone target. The retargeted simplified cartoon 

scene will be transmitted to a module encoding for the cone biophysics and 

the microLED encoding. 

A. Spatial contrast enhancement 

The purpose here is to suppress non important high 

frequency noise and textures. We use an anisotropic 

diffusion filter to eliminate noise and low importance 

textures, while avoiding smoothing across object boundaries 

[12]. The discrete equation of this filter is:    
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Where   is the gradient operator and   is the diffusion 

coefficient or the diffusivity of the equation.  denotes the 

iteration number,    is the time step (it controls the accuracy 

and the speed of the smoothing) and    ,    ,      and      

represent the horizontal (H), vertical (V), and two diagonal 

(D) gradients of the image. We achieve this with Sobel 

operators. The diffusion coefficient  is calculated from the 

following equation. 
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To increase the visual distinctiveness of high contrast 

regions in the scene, we overlay a negative spatial derivative 

over simplified scene which gives a notable edge 

enhancement giving the image a cartoon like effect.  

 

B. Spatial scene compression  

Simple bilinear resizing of the visual scene would make 

key features seem further away [13]. This makes the object 

identification process more difficult at lower spatial 

resolution. We therefore need to non-linearly retarget the 

scene into a smaller size, thus expanding the effective field 

of vision. To do that we have developed a non-linear scene 

retargeting technique, which generates an importance matrix 

    this involves how much each pixel in the input scene 

should be nonlinearly shrunk (comprised). It is a 

combination of two measures: a local saliency gradient map, 

and a temporal motion map. The later is derived from a 

temporal derivative of the visual scene:  
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We use n=1 to minimize processing requirement. To give 

higher importance values for the foreground objects over the 

saliency and background objects, we modify the importance 

matrix by giving background areas very low importance 

weights. The modification process starts by looking for 

seams with lowest cumulative energy values [10, 14]. A 

seam is defined to be a connecting path of pixels (one in 

each row, in case of vertical compression) with minimum 

energy values. By knowing the locations of lowest energy 

pixels, we rescale all the pixels of the importance matrix 

along the path of all the seams to very low importance 

values. 

The importance matrix ranks the components of the scene. 

The shrinkability matrix defines the relative extent to which 

pixels in the source image should be shrunk to retarget the 

image by   columns. The shrinking value of each pixel  ( ) 
for row or column shrinkage is given by:  

  ( )  
 

 ( )  ∑   ( )⁄ 
   

 (4) 

(The summation of  ( ) over j columns equals  . The 

adaptation of the importance matrix and the shrinkage map 

processes are fully discussed in our previous paper [10]. 

 

C. Cone biophysics and pulse coding. 

Cone cells are analog signal integrators which determine 

signal intensity and module glutamate release accordingly. 

From the literature [7], we determine the cone cell response 

to light to be as follows: 

  
 

  

   
            (5) 

Where R is the cell response and ϕ is the light intensity. 

As such we rescale our image to take this into account and 

reset to a given dynamic range. As the light is pulse width 

modulated, the dynamic range is a given frame time divided 

by the minimum pulse time. Generally in virtual reality we 

need frames time less than 20ms (i.e.> 50Hz) to prevent 

motion sickness. We can also presently address our LED 

array within 1ms but hope to scale that to 100µs in the near 

future. We have therefore used a dynamic range of 200.  

 The photon dynamic range of the cells is 10
15

-10
17

 

Photons/cm
2
 [7]. This equates to a requirement of 3x10

-5
-10

-

3
W/mm

2
. Typically, our LEDs are 1% efficient, and we 

assume the same for the optics. We therefore require an 

energy consumption of 0.3-30W/mm2 from our emission 

system. Each pixel is 100µm
2
 and will therefore consume 

between 3-300 µW. We have therefore introduced a 

recursive algorithm to prevent the energy consumption 

becoming too high.  

Once we have determined our dynamic range, we convert 

to a pulse width modulation scheme and distribute the 100µs 

pulses evenly through 20ms time space. As there is a range 

of different brightness, there will then be a reduced 

probability of all LEDs being turned on at once. A check is 

put in place whereby should the predicted output go beyond 
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the power threshold, the dynamic range is reduced 

accordingly.  

 

D. Implementation 

The prototyping platform has been implemented on a 

desktop computer; with a 2.8 GHz Intel Core Quad 

processor, 8 Gb Memory, and a GTX285 graphics card. The 

program was written in Matlab with an Accerlereyes GPU 

plug-in and connected via USB to our microLED array. An 

image of our set up can be seen in Figure 3 below. 

 

Figure 3 Snapshot from the experiment. A snapshot for the whole 

system describing the main components, Left, a computer system 

performing the processing, centre a virtual reality helmet camera on a 

dummy, right the microLEDs analyzed under a microscope.  

 

III. RESULTS AND DISCUSSION 

To demonstrate the effect of scene simplification, we 

performed the cartoonization step on a low contrast scene. 

The results are shown in Figure 4, and the cartoonized 

versions clearly show improvement in our model of returned 

vision.  

 
Figure 4 The effect of scene simplification Top row from left to right: a 

256x256 image of a low contrast scene, 64x64 cartoonized version, and a 

256x256 cartoonized version. The bottom row shows our estimation of how 

it would be perceived assuming 30% of the resensitized cone cells are 

functional. 

Figure 5, shows a snapshot from video file for subjects 

moving in playground field with dimension of 400×400. The 

images have been left in edge form for ease of dimension 

comparison. The scene is retargeted using three methods; 

our seam-assisted-shrinkability (SAS) retargeting approach 

(first row of Figure 5 (B)), bilinear resizing (second row) 

and cropping (last row).  

The SAS method cannot know future scenes, so it exhibits 

an increasing wobble or video jitter with higher spatial 

compressions. Subjectively we find a 25-40% compression 

gives the most effective result [10]. We therefore show 

comparative compressed images of 256×256 pixels for each 

of the cases, which are then interpolated to 64×64 and 16×16 

pixels. Image cropping (tunnel vision) loses peripheral 

information, and resizing makes objects seem further away. 

The SAS algorithm compresses the less useful information 

keeping the main features at the same size.  

 
Figure 5 The effect of different retargetting techniques (A) The 

image before and after cartoonization (bottom). (B) First, Second and third 

rows in show the retargetd image to 256×256, 64×64 and 16×16 (from left 

to right) when using our retargeting, simple bilinear resizing and croping 

methods, respectively. 

 

Our LED stimulator is pulse modulated. For intensity 

modulation of the re-sensitized cone cells, we simply vary 

the pulse within the cells integral period (~20ms).  

At present the pulse width is determined by the 

brightness/efficiency of the micro-LED stimulator and the 

efficiency of the channelrhodopsin. Already a CatCh[15] 

form of channelrhodopsin shows significantly improved 

light requirement and we expect further improvements in the 

coming years. Similarly, we expect to improve the external 

quantum efficiency of the microLED stimulator. In practice, 

this will reduce the required stimulation pulse width. 

Reducing the width of the stimulating pulse increases the 

number of the allowed stimulating spikes. This in turn 

enhances the visual perceived scene for larger image sizes 

(e.g. 256×256) 

(A) (B)
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Figure 6 Pulse distribution from the microLEDs using PWM 

intensity control. Left the light pulse distribution from a 64x64 array. 

Right, the pulse distribution from a 256x256 array.  

Our results showed the importance of scene simplification 

and retargeting approaches before transferal to the patient. 

We conclude that subjectively, a  25-40% spatial 

compression of the image from the original size can give 

acceptable results [10].   

Although we believe the µLED array will be the dominant 

power consumer, it will be important to minimize processing 

energy requirement. Although we have implemented on a 

PC, our algorithms are scalable to mobile processing 

devices. The estimated power consumption of the final 

system will be limited to around 1W. A typical mobile 

phone battery is capable of ~5 Whrs. Thus, perhaps 4 such 

batteries would power the required processing over the 

course of a day. Although it is interesting to note, as we 

develop every larger µLED arrays, there may be a tradeoff 

between image dynamic range and resolution in order not to 

overload the circuitry. But again, as the efficiency of both 

the microLED illuminator and the channelrhodopsin 

biophysics improves, the power requirement will be 

decreased. 

IV. CONCLUSION 

We have shown in this paper the scene pre-processing 

steps needed to be used in an in-vivo system to stimulate 

arrays of genetically re-sensitized cone cells using light. The 

aim of this pre-processing is to enhance and maximize the 

visual information included in the scene before spike coding 

and sending it to the retina. We demonstrated how the scene 

simplification and our non-linearly retargeting technique 

kept the relevant information of the scene when it is 

downscaled to small scales. We also showed that we can 

modify the pulse width modulation scheme to smooth the 

current usage and trade-off between power consumption and 

dynamic range.  
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