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Abstract— Falls are a major concern for the elderly and their
ability to remain healthy. Fall detection systems may notify
emergency responders when no one apart from the injured is
present. Unfortunately their real-world application is limited
by a number of factors such as high false positive rates, low-
compliance, poor-usability and short battery lifetime. In order
to improve these aspects, we have developed a miniaturized
3D accelerometer integrated in a belt buckle, the actibelt R©,
and a fall detection algorithm. We have used a new evaluation
method to assess the upper limit of the false alarm rate of
our algorithm using a large set of long term standardized
acceleration measurements recorded under real life conditions.
Our algorithm has a false alarm rate of seventeen false alarms
per month, and has the potential to be reduced down to, at most,
three false alarms per month when activities which require the
sensor to be removed are eliminated. In laboratory settings,
the algorithm has a sensitivity of 100%. The algorithm was
successfully validated using data from a real-world fall

I. INTRODUCTION

Health care among the elderly is a rising social and
economic concern as life expectancy trends grow. It is
becoming increasely clear for commissioners and decision
makers that new care models are needed for the sustainability
of modern society. The European Commission has recently
identified a “need for urgent action to shift the focus from
acute, reactive, and hospital-based care for the elderly to long
term, proactive and home-based care” [1].

A major problem is that falls in older people are frequent
and many of the elderly who fall at home become helpless
and require assistance to get up. Tinetti and colleagues [2]
conducted a study with 313 noninjured fallers living in the
community, aged 72 years and older, of which 47% reported
inability to get up after at least one fall. Fleming et al. [3]
found that the 80% (53/66) of the elderly fallers in their
90’s were unable to get up after a fall, and 30% had lain
on the floor for an hour or more. Of those who were alone
when they fell, 80% did not activate their alarms. In this
context, user-friendly automatic or semiautomatic emergency
response and monitoring systems can extend the length of
time that seniors are able to live in their own homes.
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The focus of this paper lies in a critical part of such
alarm system: the sensitivity and false alarm rate of the fall
detection algorithm. Together with the usability aspect of
the activity monitor these are known to be the key success
factors for fall detection systems. To satisfy the condition
that the algorithm runs in real-time for an extended period
of time in the microcontroller of the monitoring device and
to guarantee a high user acceptance, a low power activity
monitor integrated in a belt buckle, the actibelt R© [4]-[6], is
used as key part of the study.

II. METHODS
A. Acceleration sensor

The actibelt (Fig. 1) is a custom-built 3D accelerometer
(ADXL 345 BCCZ Analog Devices), with high resolution
(13-bit) measurement up to ± 6 g (g = 9.81 m/s/s) and
100 Hz sample frequency. The sensor is integrated in a belt
buckle placed near the center of mass of the human body
and it records the accelerations relative to the trunk along
the vertical, mediolateral and anterioposterior directions.

Fig. 1. Photos of the actibelt R© accelerometer used for the data acquisition

It measures the static acceleration of gravity as well as
dynamic acceleration resulting from motion or shock. Its
high resolution (4mg/LSB) enables resolution of inclination
changes of as little as 0.25◦. The unit is waterproof. The
dimensions are 65x38x9 mm and it weighs 34 gr. The
512 MB storage capacity permits and autonomous operating
time of about 10 days. The power supply is provided by a
rechargeable LiPo battery that lasts approximately one month
and can be recharged via USB in 2 hours.

The actibelt R© (version actibelt R©-BLU) includes a tem-
perature and barometric pressure sensor (Bosch BMP085), a
bluetooth c© module (LMX9838 National Semiconductors)
and a 125 KHz RFID module. The wireless device is
equipped with a micro USB port and a removable 8 GB
micro SD card.

B. Subject Database
1) Historical Database: During the last 6 years, the
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built a database with more than 100,000 hours of accelerome-
try recordings. The standardized placement of the accelerom-
eter as well as unchanged sensor type and sampling fre-
quency allowed to build a valuable resource for algorithm
development and refinement. For this study and to validate
the upper limit of the realistic false alarm rate of our algo-
rithm we selected 3 subsamples from the database according
to age criteria: adolescents, middle-age and elderly people.
Despite the fact that the fall detection system is thought to
be used among the elderly we designed our study to include
subjects of a wide age range to confirm our assumption about
the potential decrease of false alarm rate with age.

In total, 2,415.9 hours (100.7 days) of continuous weekly
acceleration measurements corresponding to ADLs (Activi-
ties of Daily Living) in free living conditions were used for
the validation. The subsamples are distributed as follows: the
first cohort is comprised of 3 diabetic adolescents (10.5yr),
the second cohort is formed by 6 healthy individuals (6 male,
32.3 yrs) and the third one by 5 elderly women (70.2 yrs)
diagnosed with osteoporosis but without mobility limitations.

2) Prospective Data Collection: For the development and
improvement of the fall detection algorithm a series of
fall-like activities and simulated fall events (Table I) were
performed by two healthy individuals (2 male; age: 46 and
79 yrs; height: 1.84 and 1.74 m) in a controlled laboratory
setting at the Sylvia Lawry Center for Multiple Sclerosis
Research (Munich, Germany). Both subjects were informed
about the aims of the activity measurement and had given
written informed consent.

3) Real-world fall: During the course of this research,
a patient (male; 56 yrs) who participated in a rehabilitation
exercise therapy fell accidentally out of the clinic while being
monitored with the actibelt R©. The fall resulted in a fracture
of the neck of femur. This unfortunate accident provided us
with an extremely valuable data for two main reasons: 1) the
difficulty that in itself entails to get a real fall. As an example,
to capture 100 real-world falls it would be necessary to
record approximately 100,000 days of physical activity (300
person years) [8]. And 2), the detailed documentation about
the real-world fall and previous weeks; in addition to the self-
reported information, we have 24-hour actibelt R© recordings
and clinical functional test measurements (Timed Up and Go
test, 10 meter test and 6 minute walking test) from the two
weeks prior to the accident.

C. Trial protocol

The trial protocol consists of a series of 16 real falls in
laboratory conditions and 7 fall-like activities which should
not trigger an alarm. The experiments were performed on
a sofa and on a crash pad 8 cm thick (see Table I). Falls
were performed in three directions: backwards, forwards and
sideways, starting from a walking and a standing position
and were selected to mimic typical real world situations.
E.g., sequence 17 and 18 reflect situations where the subject
stumbles before falling down. Sequence 12, 13 and 14 imitate
the everyday scenario of a person lying down on the bed and,
occasionally, tossing and turning. The last task (number 23)

simulates someone who sits down and loses consciousness
resulting in a fall.

All participants performed the sequence once and were
instructed about how to execute the specific task at the
beginning of each activity. All activities start with a pause
of five seconds, followed by a tap on the belt and other five-
second pause. All activities were video recorded. One faller
was the senior author of this manuscript.

III. FALL DETECTION ALGORITHM

A. Feature extraction

The preprocessing of the raw data was performed accor-
ding the filtering methods described by Karantonis et al.
in [7]. First, the acceleration raw data is denoised using
a median filter (n = 3). Then, in order to get the gravity
acceleration component (GA) the output is low pass filtered,
whereby a custom third-order elliptical infinite impulse re-
sponse (IIR) filter with cut-off frequency at 0.25 Hz. The
acceleration forces originated by the body movements (BA)
are extracted by subtracting the gravity acceleration to the
denoised signal. After that, both components, GA and BA,
are transformed into spherical coordinates.

By comparing the magnitude of the acceleration vector
produced by the body movement, ρBA, with a certain thresh-
old we determine a possible impact against the ground. This
magnitude can be calculated as following:

ρBA[i] =
√
x2[i] + y2[i] + z2[i] (1)

where x[i] is the ith sample along the x axis (likewise for
y[i] and z[i]).

The θ coordinate of the gravitational component, θGA, is
used to differentiate between standing/sitting position and
lying orientation. The value θGA (equation 2) estimates the
angle formed by the vertical axis of the upper body and the
ground.

θGA[i] = cos−1(z[i]/ρBA[i]) (2)

where z[i] is the ith sample along the vertical axis.
To distinguish between rest and activity phases the sum

of the windowed standard deviation, SWSD (equation 3), of
the ρBA signal was calculated for a window length L = 50
samples.

SWSD =

n∑
i=1

σi (3)

where

σi =

√√√√√ iL−1∑
j=(i−1)L

(ρBA[j] − ρ̄BAi)
2

L
(4)

with

ρ̄BAi =

iL−1∑
j=(i−1)L

ρBA[j]

L
(5)
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TABLE I
TEST PROTOCOL

Surface Starting position No Instructions ∗ Desired outcome

Crash pad

3 steps away from the
crash pad

1 walk, fall forwards softly, stay in lying position for 10 sec alarm
2 walk, fall forwards softly, writhe softly for 10 sec alarm
3 walk, fall forwards hardly, stay in lying position for 10 sec alarm
4 walk, fall forwards hardly, writhe softly for 10 sec alarm

1 foot away from the
crash pad

5 fall forwards softly, stay in lying position for 10 sec alarm
6 fall forwards softly, turn on your back, stay in lying position for 10 sec alarm
7 fall forwards hardly, stay in lying position for 10 sec alarm
8 fall forwards hardly, turn on your back, stay in lying position for 10 sec alarm

2-3 feet away from the
crash pad

9 fall backwards softly, stay in lying position for 10 sec alarm
10 fall backwards hardly, turn on your back, stay in lying position for 10 sec alarm
11 fall backwards softly, get up after 5 sec no alarm
12 lie down backwards, stay in lying position for 10 sec no alarm
13 lie down backwards, writhe heavily for 10 sec no alarm
14 lie down backwards, writhe heavily for 10 sec and tap on the belt no alarm
15 fall softly sideways, stay in lying position for 10 sec alarm
16 fall hardly sideways, stay in lying position for 10 sec alarm

1 foot and 3 steps away
from the crash pad

17 walk, stumble after 3 steps and fall forwards softly, stay in lying position for
10 sec

alarm

18 walk, stumble after 3 steps and fall forwards hardly, stay in lying position for
10 sec

alarm

Sofa half a foot away from
the sofa, facing it
backwards

19 fall on the sofa, leave your upper body in an upright position, stay for 10 sec no alarm
20 fall on the sofa, leave your upper body in an upright position, writhe softly,

stay for 10 sec
no alarm

21 sit on the sofa, change into a lying position, stay for 10 sec no alarm
22 fall on the sofa, change into a lying position, stay for 10 sec no alarm

Sofa and
crash pad

23 sit on the sofa, wait 5 seconds, tap on the belt buckle, wait 10 sec, fall forwards
on the crash pad, stay in lying position for 10 sec

alarm

∗Explanation: fall soflty: break the fall with your arms and knees, writhe softly: 10 ◦-15 ◦ change of position, writhe heavily: approx. 90 ◦ change
of position, stumble: after 3 steps, hook your one leg behind the other and fall.

B. Threshold calculation

To find the optimal thresholds for the identification of the
fall impacts and the relative body position, the controlled fall
data set (30 simulated falls; Table I) was divided randomly
in two equal groups, one selected as the training group. The
thresholds were calculated using only data from this dataset.

The threshold for ρBA was chosen such that we achieve
100% sensitivity when the algorithm is run over the training
data and it was selected as the minimum rounded down value
of the acceleration peaks produced by the fall impacts in the
signal ρBA. This number, thmag , is equal to 1.9 g. The tilt
angle threshold, thang , was selected as the minimum average
value of θGA during the next 13 seconds after the fall, and its
value is 49.8 degrees. The three seconds immediately after
the fall were ignored due to potential residual movement
relating to the knock into the crash pad. To identify periods
of inactivity the SWSD of the magnitude vector signal should
be under the threshold, thact = 3.0 g.

C. Fall detection algorithm

The fall detection algorithm is based on the detection
of an impact by the comparison of the magnitude of the
acceleration vector produced by the body movement to a
preset threshold and on the body orientation after the impact.

The ρBA samples which surpass thmag are grouped to-
gether in a block provided that the sample difference in
between them is not more than 15 samples and the length
of the block is maximum 1 second duration (100 samples).
Each of these blocks is classified as a potential fall. In a

second step, the relative position of the trunk in respect of
the perpendicular vector to the ground’s plane is calculated
along the 10 seconds interval within the 3rd and 13th second
after the first sample of the block. It has been empirically
found that an interval of 3 seconds after the fall is enough
for the tilt signal to stabilize in case of a fall occurs. If
the trunk tilt given by θGA within this period goes over the
threshold thang , the person is considered to be in a non-
standing position. An alarm is then only activated if the
person was in a standing position before the impact and the
quantity of movement after it does not go over the threshold
thact.

D. Validation method

In order to evaluate the performance of our fall detector,
the algorithm was ran, first, over the whole test battery of
activities and simulated fall events (Table I); second, over
the continuous acceleration data set of ADLs recorded in a
free-living environment and then over the real fall data.

The output of the first analysis yields an estimation for the
sensitivity of the algorithm on the basis that the fall scenarios
covered in the experiment protocol are highly representative
of a real fall, whereas the free-living activity recordings give
an upper limit for the false alarm rate (it is unknown whether
some real alarms were within the ones detected as such)
in an entirely realistic scenario. Finally, the real-world fall
was useful to test the ecological validity of our test protocol.
The fall-like activities included in the protocol were intended
to be used for the refinement of the algorithm or in event
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of troubleshooting in case that the false alarm rate were
much higher than the expected one but never to serve as
an estimation for the specificity. The ecological validity of
the specificity calculated as such is void due to the absence
of a prevalence value.

IV. RESULTS
In total, 2,416 hours of uncontrolled ADL activities, 46

simulated falls and fall-like events as well as one real-
world fall were analyzed in R retrospectively. The overall
sensitivity measures the percentage of positives (alarms) in
the prospective data collection which are correctly identified
as such. In our study we obtained a sensitivity equal to 100%.

The algorithm detected a fall-like impact (see Fig.2) when
ran over the file which contained the real-world fall at around
the same time when it was reported that it happened. 1,270
100 samples per axis × 3 axis (approx. 3,5 hours recording)
were analyzed and the results did not show any false alarm.
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Fig. 2. Real fall detected by the algorithm. Red line is vertical axis, green
is mediolateral axis and blue is anterioposterior axis (g = 9.81 m/s/s)

The upper limit for the false alarm rate was calculated
separately for each cohort in a two-step evaluation. The
results are shown in Table II. The UL-cure refers to the
results obtained after eliminating the false positives due to
the act of removing the device from the belt. Our assumption
about false alarm rate decreases with age was confirmed.

TABLE II
UL-RAW/UL-CURE: UPPER LIMIT FALSE ALARM RATE WITHOUT/WITH

DATA CURATION (FALLS PER MONTHS)

Mean age (yrs) Recorded hours UL-raw UL-cure
Cohort 1 10.5 688.1 135 127.7
Cohort 2 32.3 732.1 26.6 11.8
Cohort 3 70.2 995.7 17.4 2.9

V. CONCLUSION
We have developed a promising methodology to detect

falls using a body worn sensor, that has high sensitivity and
an acceptable rate of false alarms. We think that it is a par-
ticular strength of the current study to have provided a strict

upper limit for the realistic false alarm rate using historical
accelerometry data. One should note that the specificity of
an algorithm using fall data generated in laboratory settings
is meaningless due to the absence of a prevalence value
although it is still widely used as a measure for algorithm
performance.

The success detecting a real fall evidence that the simula-
tion protocol we chose for the algorithm development cove-
red at minimum one real fall scenario. The lack of more and
various types of real fallings restricts the ecologic validity
of our result of 100% sensitivity. An open accelerometry
database including real world-falls would be of considerable
importance for a continuos and independent refinement and
validation of fall detection and prevention algorithms - see
also [8].

Future work should focus on the optimal implementation
of the algorithm in the microcontroller of the actibelt R© and
aim at further decreasing the number of false alarms by
sensor fusion and suppression mechanisms, e.g., through the
use of smart phones and automatic ways of detecting sensor
removal.
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