
  

  

Abstract—Evaluation of arterial compliance is very 
significant in early detection of coronary heart disease. Here we 
present an imageless portable system for automated estimation 
of local arterial compliance, designed to be operated by a 
general medical practitioner with no prior knowledge of 
ultrasonography. An algorithm for automatic detection and 
tracking of the arterial wall locations has been developed to 
minimize the operator expertise required for measurement. 
The performance of the automated algorithm was thoroughly 
characterized using a simulation platform developed for the 
purpose. Measurements performed on a few human volunteers 
by untrained personnel clearly illustrated the practical utility 
of the automatic algorithm during in-vivo tests. The proposed 
system could be used for developing an inexpensive 
cardiovascular screening device for large scale deployment in 
primary health care centers. 
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I. INTRODUCTION  
Non-invasive evaluation of the arterial compliance for the 

common carotid artery (CCA) has been established to be 
very significant in early detection of coronary heart disease 
(CHD) [1]. Given the high incidence of CHD in the 
developing nations, a low cost screening device based on 
arterial compliance measurement, that can be used by a 
general practitioner is very desirable [2]. The use of B-mode 
ultrasound images for this measurement puts a premium on 
both the hardware required for data processing and also on 
the operator expertise necessary for identification of the 
arterial wall [3]. We had earlier demonstrated the feasibility 
of a single element ultrasound transducer in the 
measurement of arterial distension [4].  

Here we present an imageless system for automated 
evaluation of arterial compliance with a new algorithm for 
automatic detection and tracking of the arterial wall 
locations. A parametric analysis is performed using a 
dedicated simulation platform to thoroughly evaluate the 
performance of the wall detection and wall-tracking 
algorithms. The in-vivo performance of the proposed system 
is also evaluated to verify the practical utility of the system 
operated by untrained personnel. The arterial compliance 
measures of a few human volunteers measured during in-
vivo tests are also presented. 

II. HARDWARE DESCRIPTION 
The hardware architecture of the system built for use with 

a single element ultrasound transducer has already been 
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presented in our previous work [4]. A set of 5 V digital 
pulses generated with an Atmega-8 (Atmel) microcontroller 
is utilized by the transducer driver to generate sharp high 
voltage pulses which excite the ultrasound transducer (V110 
RM, Panametrics NDT) at its resonant frequency of 5 MHz 
( ௨݂௦) [4]. The echo signal is received by the same transducer 
and is filtered (1st order high pass filter with cutoff 100 KHz), 
amplified (pre-amp with gain 40 dB) and digitized at         
100 MS/s using a NI-USB-5133 scope (National 
Instruments). The pulse repetition time (ݐ௣௥) is 10 ms. 
Brachial artery systolic and diastolic pressures ( ௕ܲ௦ and ௕ܲௗ), 
measured by using an automatic blood pressure monitor 
(HEM-7101, OMRON), is used to estimate the carotid 
pressure for calculation of arterial compliance estimates. 

III. DATA ACQUISITION AND SIGNAL CHARACTERISTICS 
The transducer is placed over the patient’s neck 

approximately 2 cm below the carotid bulb. After every  ݐ௣௥ 
seconds a pulse is fired and N data points are acquired for 
next ݐ௔௤ seconds (N ൌ ௔௤ݐ  ൈ ௦݂). After M ൈ  ௣௥ seconds weݐ
have M rows of N points each. The signal processing 
algorithm uses this M x N matrix ܴ containing raw data as 
input (Fig. 1). The system searches for pair of pulsating 
walls, to provide real-time assistance to the operator, in 
placement of the probe through binary indicators. Echoes 
observed in the received signal (Fig. 2) arise from specular 
reflection at the following types of scattering structures. 

i. Fixed structures and skin-gel interface which show up as 
static echoes (SE). 

ii. Adjacent echoes moving in opposite directions, that 
correspond to the proximal and distal walls of the artery 
(MW). 
 

 
Figure 1. Illustration of the transducer placement and signal 
characterisation. The structure of matrix R and distension of artery is also 
shown. 
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Figure 2. A simulated frame (SNR = 10 dB) with the movement of the 

arterial wall echoes visualized over successive acquisitions. 

iii. Echogenic tissues near the artery that are pushed into 
motion by its pulsating  walls (MT). 

iv. Noise. 
The algorithm uses this motion cue (ii) for validating the 

correct positioning of the probe and identifying the 
approximate wall positions for tracking. 

IV. SIGNAL PROCESSING ALGORITHM 
Apart from the regular wall motion tracking, the signal 

processing algorithm in an imageless compliance system has 
to perform the additional task of assisting the user to place 
the probe over the CCA correctly and automatically identify 
the approximate arterial wall locations. The overall 
measurement algorithm has two important stages, viz. (i) 
Wall detection stage, in which the artery is identified and 
approximate wall locations are determined, and (ii) Motion 
tracking stage, in which the movement of arterial walls are 
tracked to obtain the distension waveform.  

The overall block diagram of the two stages is illustrated 
in Fig 3. As the operator slides the probe over different 
expected locations on patient’s neck, M rows of data are 
acquired and passed into the wall detection algorithm as 
matrix R. Each row of R is filtered with a 5th order band pass 
filter. Then a non-linear gain is applied to suppress high 
amplitude reflections from skin gel interface. The algorithm 
tries to identify the wall positions (Wall1 and Wall2) and if 
successful, asserts an LED indicator. This means that the 
artery has been found and the operator must hold the probe 
steadily at the same position until enough data is acquired for 
reliable compliance measurement. If no artery is found then 
algorithm goes on to reload R by acquiring next M rows of 
data and repeats the procedure. The value of M is kept small 
(typically 2 to 10) to enable fast processing of R thereby 
facilitating the real time placement of probe and automatic 
identification of approximate wall locations. If artery is 
found, then the algorithm moves into the second stage. Two 
windows are placed around Wall1 and Wall2. The features in 
the windows are tracked over successive M’  frames using 
correlation window based technique [4]. Two waveforms 
corresponding to the positions of the two walls are obtained. 
As artery walls move in opposite directions, the two 
waveforms are negatively correlated.   

 
Figure 3. Motion tracking stage of the signal processing algorithm. 

It is possible that user may lose the artery location due to 
hand motion or patient’s movement. This check ensures 
additional fidelity of measurement. Finally, arterial distension 
and arterial compliance are measured by standard methods. 

A. Automatic identification of approximate arterial wall 
locations 

The R matrix (after filtering and application of non-linear 
gain) is the input to this algorithm. It is a MxN matrix whose 
row and column indices are ݉ ג ሾ0, M െ 1ሿ ܽ݊݀ ݊ ג ሾ0, N െ
1ሿ respectively. Let ݉௧௛ row of R be denoted by ܨ௠ . We 
calculate a sliding window covariance SWC୫with a window 
length of W of each ܨ௠ and ܨ௠ିଵ frame as defined in (1).  

SWC୫ሺnሻ ൌ 

∑ ிሺ೘షభሻሺ௞ሻൈி೘ሺ௞ሻ
ೖస೙శቔW

మ ቕ

ೖస೙షቔW
మ ቕ

W
                      (1) 

 for,  ቔW
ଶ

ቕ ൏ ݊ ൏ N െ ቔW
ଶ

ቕ, W is odd 
 

ൌ ,ݎ݋݂                                ,0 ݊ ݎ݄݁ݐ݋ ݈݈ܽ ൏ ܰ      
 

The SWCm curve is then normalized between 0 and 1 (Fig. 4). 
SWC୫ሺnሻ  ൎ  0 for all ݉, at any ݊ corresponding to noise 
locations because covariance of noise is very small. It shows 
distinct peaks at any n corresponding to significant structures. 
The typical ratio between value of peaks of SWC୫ at n 
corresponding to echo and noise is typically 100:1. The very 
small values of SWC୫ሺ݊ሻ, at any n corresponding to noise is 
eliminated by using a fixed threshold. We smooth each SWC୫ 
and detect the peaks by using a second derivative based peak 
detection algorithm. Assuming the two walls are always more 
than more than 4 mm apart [5], we eliminate the smaller peak 
out of any two peaks placed less than 2 mm apart. Let L peak 
locations detected for SWC௠ be denoted 
as ௠ܲ଴, ௠ܲଵ, … ௠ܲ௟ , … , ௠ܲሺLିଵሻ. There are significant echoes at 
each ௠ܲ௟ in  ܨ௠ିଵ and ܨ௠. For isolating moving echoes from 
static echoes using correlation based shift estimation between 
all L significant features in ܨ଴ and ܨ௠ (Fig. 5), we place 
windows ଴ܹ௟ and ௠ܹ௟ of length (2W+1), centered at each P୫୪ 
on ܨ଴ and ܨ௠ respectively, as defined in (2) and (3).  
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଴ܹ௟ሺ݇ሻ ൌ ଴ሺܨ  ௠ܲ௟ െ W ൅ ݇ሻ, א ݇ ݎ݋݂ ሾ0, 2Wሿ            (2) 

௠ܹ௟ሺ݇ሻ ൌ ௠ሺܨ  ௠ܲ௟ െ W ൅ ݇ሻ, א ݇ ݎ݋݂ ሾ0, 2Wሿ          (3) 

For each ܨ௠ we define  ܵ௠ having L points, which is a 
measure of shift in the features at  ௠ܲ௟ between  ܨ଴ and ܨ௠ by 
(4) and (5). 

ሻ݌௠௟ሺܥ ൌ  ∑ ଴ܹ௟ሺkሻ ൈ ௠ܹ௟ሺk ൅ pሻ୩ୀଶW
୩ୀ଴                       (4) 

,ݎ݋݂ א ݌ ሾെ2W, 2Wሿ  ܽ݊݀ ݉ ג ሾ1, ܯ െ 1ሿ 

ܵ௠ሺ݈ሻ ൌ  index of max ሺܥ௠௟ሻ                                        (5) 

We are not interested in any static echoes so we delete all 
ܵ௠ሺ݈ሻ ൌ 0 and corresponding ௠ܲ௟. As the echoes of the walls 
of the carotid are adjacent to each other and shift in opposite 
direction we expect a zero crossing in each ܵ௠ between 
some ܵ௠ሺ݈ሻ and ܵ௠ሺ݈ ൅ 1ሻ. We copy the corresponding ௠ܲ௟ 
and  ௠ܲሺ௟ାଵሻ into two new column matrices ܹ1 and ܹ2 
respectively, each having ሺM െ 1ሻ rows (6).  

݂݅,  ܵ௠ሺ݈ሻ ൈ ܵ௠ሺ݈ ൅ 1ሻ ൏ 0 

,݄݊݁ݐ    ܹ1ሺ݉ሻ ൌ  ௠ܲ௟ and   ܹ2ሺ݉ሻ ൌ  ௠ܲሺ௟ାଵሻ      (6) 

If there are more than one l for which (6) is satisfied then we 
calculate the distance ܦ’ between ௠ܲ௟  and ௠ܲሺ௟ାଵሻ for each 
such l (7). 

ᇱܦ ൌ ൫ ௠ܲሺ௟ାଵሻ െ ௠ܲ௟൯ሺܿ 2 ௦݂⁄ ሻ                               (7) 

where, c ൌ sound velocity in tissue. 
The zero crossing between l and l+1 is considered to be 

valid only if  ܦ௠௜௡ ൏ ᇱܦ ൏  ௠௔௫. The limits of carotidܦ
diameter used for this check are well established [5]. If no 
valid peaks are detected or, if the detected peaks are located 
very close to the skin surface (within 1 mm) then we 
set ܹ1ሺ݉ሻ ൌ  െ 1 and ܹ2ሺ݉ሻ ൌ  െ1. The final value of 
approximate wall locations ܹ݈݈ܽ1 and ܹ݈݈ܽ2 are found by 
taking the median of all positive values in ܹ1 and ܹ2. If 
ܹ1 and ܹ2 have no positive values then that means artery 
walls could not be located. 

B. Estimation of wall motion and distension 
After the wall detection, M’ new frames of data are 

acquired and stored as the rows ܩ௠ of the matrix ܴ’. The 
approximate locations of the arterial walls (ܹ݈݈ܽ1 
and ܹ݈݈ܽ2ሻ obtained as a result of the wall-detection 
algorithm, is used to initialize a correlation based wall motion 
tracking algorithm [4]. The proximal and distal wall echoes 
are identified as in (8). 

   Near Wall୫ሺkሻ ൌ  G୫ሺܹ݈݈ܽ1 െ W ൅ kሻ (8a)      
   Far Wall୫ሺkሻ    ൌ  G୫ሺܹ݈݈ܽ2 െ W ൅ kሻ (8b) 

א ݇ ݎ݋݂                                     ሾ0, 2Wሿ                   
The movement of the wall echoes in between successive 
acquisitions is estimated based on a shift and search 
algorithm utilizing a correlation based technique [4]. The 
estimated shifts between successive acquisitions are 
cumulatively added to estimate the proximal and distal wall 
motion waveforms ݀௡௪ሺ݉ሻ and  ௙݀௪ሺ݉ሻ. The arterial 
distension waveform ∆݀ሺ݉ሻ is then calculated as in (9). 

 

 
Figure 4. Representation of characteristics of ܹܵܥ௠ curve overlayed over 

௠݂ and ௠݂ିଵ. It shows distinct peaks at all static and moving structures but 
very low amplitude at regions corresponding to noise. 

 
Figure 5. The value of ܵ௠ሺ݈ሻ is illustrated here at differet peak locations 
( ௠ܲሺ݈ሻ) for a particular ܨ௠.  This represents the shift of each significant 

echo from its position in ܨ଴. Zero crossing in ܵ௠ can be clearly observed. 

∆݀ሺ݉ሻ ൌ  ௙݀௪ሺ݉ሻ െ ݀௡௪ሺ݉ሻ                                     (9) 
,ݎ݋݂ א ݉ ሾ0, ᇱܯ െ 1ሿ                              

 
From the distension waveform the frame numbers 
corresponding to the minimum diameter are identified and 
the diastolic diameter (ܦௗ) and systolic diameter (ܦ௦) is 
estimated by method proposed in [4]. 

C. Wall motion negative correlation check 
 We find the value of correlation Q between ݀௡௪ and ௙݀௪ 
(10). As the two walls of the artery show opposing motion, 
this must be negative for the measurement to be valid. 
 

   ܳ ൌ
ۄ௡௪ ௙݀௪݀ۃ െ ݀ۃ௡௪ۃۄ ௙݀௪ۄ

ටሺ݀ۃ௡௪
ଶ ۄ െ ۃଶሻ൫ۄ௡௪݀ۃ ௙݀௪

ଶ ۄ െ ۃ ௙݀௪ۄଶ൯
 

(10) 
where,   ܺ implies the mean of all elements of ۄܺۃ

D. Compliance measurement 
Assuming the mean and diastolic pressure in the 

brachial ( ௕ܲ௠ and ௕ܲௗ) and carotid arteries ( ௠ܲ and ௗܲሻ to 
be same and, considering the pressure change in the 
carotid artery to be proportional to its distension, we scale 
the systolic pressure value obtained from brachial artery 
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( ௕ܲ௦) to find the systolic pressure in carotid artery ( ௦ܲ) [1], 
using (11).  
 

௦ܲ ൌ ௕ܲ௦ ൈ ሺܦ௠ െ  ௗሻܦ
௕ܲ௠ െ ௕ܲ௦

                                                  ሺ11ሻ 

Where, ܦ௠ is the mean diameter of the artery           
 
Using this value of systolic pressure ௦ܲ compliance and 
distensibility is measured using (12), (13) and (14). 

 
∆ܲ ൌ ௦ܲ െ ௗܲ and ∆ܦ ൌ ௦ܦ െ  ௗ                                  (12)ܦ
Compliance ൌ ܦ∆  ∆ܲ⁄                                                     (13) 
Distensibility ൌ ܦ∆     ሺ∆ܲ ൈ ⁄  ௗ ሻ                            (14)ܦ 

V. PERFORMANCE EVALUATION OF THE ALGORITHM 

A. Test-bench for Automatic wall detection 
The functionality of the wall-detection algorithm is 

verified by using a test bench developed in Matlab®. The test 
bench generates data sets similar to the echo reflections 
obtained from CCA. The ultrasound pulses are modeled as 
Gaussian modulated sine waves and the echo signal is 
generated using weighted, time-shifted pulses [6]. From a 
pre-recorded noise sequence (measured from the 
experimental hardware), N continuous samples are chosen 
starting from a random location, scaled in amplitude and 
added to the simulated signal to obtain various levels of 
signal to noise ratio (SNR). User can define rest locations 
(W1୅ୡ୲୳ୟ୪ and W2୅ୡ୲୳ୟ୪) of the artery walls, the shape of the 
motion waveform (݀௡௪ and ௙݀௪) and maximum peak to peak 
amplitude ∆ܦ. Arterial wall motion is simulated by 
generating a two dimensional array of echo signals with 
motion profiles that can be sinusoidal, triangular or user 
defined. Parameters for static echoes and other moving 
echoes can also be specified. For the simulation studies, the 
following parameters were kept constant to match with the 
configuration of our experimental hardware setup, viz. ௨݂௦ ൌ
,ݖܪܯ 5 ௦݂ ൌ ,ݖܪܯ 100 ௣௥ݐ  ൌ ܰ and ,ݏ݉ 10 ൌ 5333. 

B. Benchmarking criteria  
The ability of the wall-detection algorithm to correctly 

identify the approximate locations of the arterial walls is 
quantified in terms of Hit-rate (16). A Hit implies that the 
algorithm is able to find the locations of the arterial walls 
within reasonable limit of the wall’s mean location 
(W1୅ୡ୲୳ୟ୪ and W2୅ୡ୲୳ୟ୪). A Hit is defined to have occurred 
if equation (15a) and (15b) are satisfied. 

      หW1୅ୡ୲୳ୟ୪ –  ܹ݈݈ܽ1ห  ൏  (15a)                                 ܦ∆ 

and,     หW2୅ୡ୲୳ୟ୪ –  ܹ݈݈ܽ2ห  ൏  (15b)                                 ܦ∆ 

            Hit Rate ൌ  No. of Hits ൈ 100 N୫ୣୟୱ⁄                   (16) 

Here Nmeas is the number of measurements performed for 
each combination of values of variables. All results are 
reported for Nmeas = 100. M new frames with different set of 
noise are generated for each individual measurement. Results 
of parametric analysis are reported in next section.  

All measurements are done by varying the characteristics 
of signal shown in Fig. 1. Parameters are SNR, number of 

frames for each individual measurement (M), 3 dB pulse 
width of echo signal (PW3dB), window length (W) and 
Frequency of oscillation of walls ( ௢݂).  All simulations are 
done with sinusoidal wall distension waveform having peak 
to peak amplitude (∆ܦሻ of 500 µm. 

C. Performance of the wall-detection algorithm 
It can be seen from Fig. 6 that the algorithm is able to 

correctly identify the wall locations for SNR levels as low as 
5 dB, with Hit-rate more than 90 %, for wall motion 
frequencies in the range of 0.6 – 4 Hz. The Hit-rate improves 
at larger SNR levels and at higher motion frequencies.  

From Fig. 8 it is observed that at low SNR situations Hit-
rate can be improved by considering more frames per 
measurement.  We have to make a trade-off between Hit-rate 
and number of frames per trial (M), considering the speed 
requirement of in-vivo measurements. Offline measurements 
can always use more number of frames.  

 
Figure 6. Hit-rate vs SNR at different frequency of motion of the artery. 

 

Figure 7. Hit-rate vs SNR at different No. of Frames per measurement. 

 
Figure 8. The ultrasound echo signal received after reflection from the 

carotid artery of volunteer A. 
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Figure 9. Wall-detection Hit-rate during in-vivo measurements by 

employing  different No. of frames at W = 2mm. 

 
Figure 10. Distension waveform of volunteer A. 

Hit-rate has a flat response over a wide range of window 
length (W) but performance drops at very small and very 
large window lengths. Window length in the range between 
two to four times the peak to peak distension of artery is 
preferred. Very small windows cannot cover the complete 
distension cycle, and for very large window lengths SWC 
will not have very distinct peaks for closely spaced echoes. 

VI. RESULTS FROM HUMAN TRIALS 

A. Validation of wall detection algorithm 
The practical utility of the wall-identification algorithm 

was verified by measurements performed on a few 
volunteers. Artery wall locations (W1୙ୱୣ୰ and W2୙ୱୣ୰) were 
identified by the operator visually. Here we define a 
measurement to be a Hit when conditions as in (17a) and 
(17b) are satisfied. 

    หW1୙ୱୣ୰ –  ܹ݈݈ܽ1ห ൏ 2 ݉݉                                   (17a) 

and,   หW2୙ୱୣ୰ –  ܹ݈݈ܽ2ห ൏ 2 ݉݉                                   (17b) 

A typical ultrasound echo signal received from one human 
volunteer is shown in Fig. 8. The wall-detection Hit-rate 
during in-vivo measurements is illustrated in Fig. 9. It can be 
seen from Fig. 9, that if the algorithm analyses more than 10 
frames in every measurement, it can reach a Hit-rate of more 
than 80%. 

B. Arterial compliance values measured in-vivo 
Compliance and distensibility for the same volunteers 

were calculated by using equations (11), (12), (13) and (14) 

and the values are listed in Table I. A typical distension 
waveform is shown in fig. 10. 

TABLE I.  COMPLIANCE AND DISTENSIBILITY MEASUREMENTS FOR 
A FEW VOLUNTEERS. 

Vol 
(Age)

 ۄܦ∆ۃ
 (µm) 

∆ܲ 
(mm  
Hg) 

 ۄௗܦۃ
(mm) 

Compliance
ሺ

݉ߤ
mm Hgሻ 

Distensibility

ሺ
10ିଷ

mm Hgሻ 

A 
(23) 

448 40 5.41 11.20 2.1 

B 
(27) 

388 38 6.60 10.21 1.6 

C 
(30) 

400 34 5.76 11.76 2.0 

D 
(24) 

439 33 6.47 13.30 2.1 

VII. CONCLUSION 
An imageless system for automated evaluation of arterial 

compliance has been presented. An algorithm for 
identification of approximate arterial wall locations to 
provide real-time assistance to the operator in placement of 
the probe has been demonstrated. The performance of the 
wall identification algorithm has been thoroughly 
characterized by simulation studies. The wall-detection 
algorithm could easily identify the arterial wall, with a Hit-
rate in excess of 90 %, at SNR levels as low as 5 dB, in the 
normal expected wall-motion frequency range of 0.6 - 4 Hz. 
The wall detection algorithm achieved Hit-rates greater than 
80 % even during in-vivo measurements performed by 
untrained personnel. Compliance was estimated for a few 
human volunteers under experimental settings which clearly 
demonstrated the utility of the device as an alternative tool 
for arterial compliance measurement.  Elaborate testing of the 
system under a clinical environment is currently in progress. 
The use of automated algorithms to identify and track artery 
wall motion enables the device to be used by untrained 
personnel. Thus, the arterial compliance evaluation system 
presented here could pave the way for an effective and 
inexpensive cardiovascular screening tool.    
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