
  

 

Abstract—Computational models are valuable tools that can 

be used to aid the design and test the efficacy of electrical 

stimulation strategies in prosthetic vision devices. In continuum 

models of retinal electrophysiology, the effective extracellular 

potential can be considered as an approximate measure of the 

electrotonic loading a neuron’s dendritic tree exerts on the 

soma. A convolution based method is presented to calculate the 

local spatial average of the effective extracellular loading in 

retinal ganglion cells (RGCs) in a continuum model of the retina 

which includes an active RGC tissue layer. The method can be 

used to study the effect of the dendritic tree size on the 

activation of RGCs by electrical stimulation using a hexagonal 

arrangement of electrodes (hexpolar) placed in the 

suprachoroidal space.  

 

I. INTRODUCTION 

EVERAL groups around the world are pursuing the 

development of visual prosthesis to aid patients with 

retinitis pigmentosa and age-related macular degeneration 

[1-3], two of the most prevalent retinal diseases and leading 

causes of blindness in developed countries [4]. Both of these 

diseases result in degeneration of the retina, predominantly 

the outer retina where the photoreceptors are located, leading 

to eventual loss of vision. The inner retina however is largely 

left intact, even in patients who have been clinically blind for 

many years [5, 6], raising the possibility that these inner 

retinal neurons can be electrically stimulated to elicit light 

perception [7, 8].  

Computational modeling is a valuable tool for quantitative 

analysis of the function of biological systems under healthy 

and diseased conditions and to aid in the design of vision 

prosthesis and the development of optimal signal processing 

and stimulation strategies for use in such devices. 

Initial modeling studies on the effects of electrical 

stimulation of the retina have been limited in their scope [9, 

10] focusing on the responses of retinal ganglion cells 

(RGCs) to electrical stimulation and have largely ignored the 

presence of the rest of the retinal network and passive 

propagation through retinal layers. Other groups have 

attempted to incorporate these presynaptic inputs by 
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modeling the retina as a discrete network [11, 12].  

Our group has developed a continuum model of the retinal 

network which includes both passive retinal neuronal 

properties and active ganglion cell behavior. The generalized 

retinal network model of the ON system, the visual pathway 

that responds to light stimuli that are brighter than the 

background, incorporates synaptic inputs from bipolar and 

amacrine cells to RGCs to modulate the spiking activity of 

RGCs as it occurs physiologically. The model was used to 

simulate both epiretinal and suprachoroidal electrical 

stimulation of the retina using bipolar electrodes as well as 

the responses to light stimulation [13, 14]. 

These studies indicate that the retinal network effects play 

a significant role in shaping the spiking activity of the RGC 

layer and therefore it is hypothesized that it will affect the 

spatial and temporal responses to excitation at the cortical 

level. Therefore the extent of neural connections in the 

retinal and the dendritic trees of its component cells will be 

paramount in modulating these responses. In this paper a 

convolution based method for calculating the electrotonic 

(passive RC) input from dendritic trees of RGCs to their 

soma is presented. This pilot study suggests that the 

convolution integral is a promising method to evaluate 

electrical input experienced by each cell following electrical 

stimulation in continuum models of the retina. 

II. METHODS 

     A 3D finite-element continuum model of electrical 

stimulation of a retina that lies between choroid and 

vitreous fluid layers is described (Fig. 1) using COMSOL 

Multiphysics Version 4.2a (COMSOL AB, Sweden). The 

model consists of both an active neural retinal layer 

comprising RGCs as well as passive conductive layers 

including the inner plexiform layer (IPL), inner nuclear 

layer (INL), outer plexiform layer (OPL), outer nuclear 

layer (ONL), sub retinal space (modeled with cone 

photoreceptors), retinal pigment epithelium (RPE) and 

choroid. The conductivities of various layers were largely 

derived from [15].   

A hexagonal arrangement of circular disc electrodes (0.2 

mm in radius) are placed on the top boundary of the 

choroid layer, 426 µm from the retinal pigment epithelium 

to achieve suprachoroidal stimulation. This distance is 

based on an in vivo measurement of choroid thickness from 

a human retina [16]. The central disc is the active electrode  

and surrounding discs electrodes are the return electrodes. 

Current can be returned at one or all six surrounding 

electrodes by connecting the return electrode(s) to ground.  
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The extracellular voltage distribution Ve (V) within the 

passive conductance regions was governed by Poisson's 

equation 

  IVe                                    (1) 

where  (S/m) is the conductivity of the bulk vitreous 

medium and I is the volume current density source (A/m
3
) 

injected into the vitreous at the central electrode. 

Within the active RGC region, an adaptation of the 

bidomain equations was applied (Fig. 2). 

A simplified model the spatial morphology of neurons in 

the continuum model was implemented by tying the 

intracellular potential Vi  (V), of each cell to a resting 

potential Vr (V), representing the intracellular potential in the 

more distal portions of the neuron (axon and dendrites). This 

tie is achieved using a resistor and as a consequence, the 

intracellular potential is not able to float freely with changes 

in the surrounding extracellular potential during extracellular 

stimulation. The extracellular, but not intracellular, potential 

was continuous across elements in the finite element model 

to allow for local excitation and activation of individual 

ganglion cells without spread of activation to neighboring 

cells, important for eliciting focal excitation of phosphenes. 

 

 The extracellular voltage is determined from 

mee IV 2                                    (2) 

where the extracellular retinal conductivity e of the 

remaining layers are derived from [18, 19], and Im is the 

RGC membrane current density per unit volume, given by 
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and Vm is the transmembrane potential given by 

eim VVV                                        (4) 

Cm is the membrane capacitance and is 1 µF/cm
2
 for all cell 

types, consistent with previous modeling [9] and 

experimental studies [17]. β denotes the surface to volume 

ratio of the ganglion cell layer. A β value of 9.25x10
-4

 m
-1

 

was arrived at by assuming a ganglion cell density of 2000 

cells/mm
2
 [18], that the cells are spherical with a soma 

diameter of 18 µm and that extracellular currents stimulate 

only the soma of the ganglion cell [11] as threshold for 

activation is lowest near the soma or axon hillock [10]. 

Jion is determined based on the ionic formulation of 

Fohlmeister and Miller [9]. The extracellular voltage 

gradient is suggested to contribute to the generation of neural 

action potentials and could represent the difference in 

potential between distal portions of the neuron, representing 

the extent of synaptic inputs, and the soma. At each time 

step, a convolution integral was used to calculate the average 

effective extracellular potential (EffVe) within a defined 

volume surrounding each RGCi.  

             dxdydzrzzyyxxV
n

VEffV iiieee
22221     (5) 

It is assumed that a sphere with radius r (m) represents the 

dendritic field and n the number of finite elements within the 

sphere. Hence EffVe (V) is an approximation of the extent of 

the synaptic input electrotonic input received by the soma. 
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Fig. 2. RC circuit of the active RGC membrane potential. Cm 

represents the membrane capacitance, Ve is the extracellular 

potential, Jion is the ionic current per unit area through gated channels 

in the cell’s soma, and gr is the resistive tie connecting the 

intracellular potential Vi to a resting potential Vr, Rm is the specific 

membrane resistance. 

 

 
Fig. 1. A. Schematic diagram of the retinal model with hexagonally 

arranged electrodes. Current is injected at the center electrode and 

returned at the peripheral electrodes. The radius of each electrode is 

0.2 mm and the distance between centers of central electrode and 

each of the peripheral electrodes is 1 mm. B. Slice through the 

various layers of the model with the thickness of each layer.  
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III. RESULTS 

Simulation results are shown in Fig. 3 for a combination 

of return electrodes and “r” values in the convolution integral 

(equation 5). The membrane potential of a point representing 

an RGC cell and lying directly below the central stimulating 

electrode was probed for active excitation following 

electrical stimulation using a pulse 0.2 ms in duration and a 

monophasic cathodic pulse 6.3 mA in amplitude. Action 

potentials were elicited when the size of the dendritic field 

was 200 µm regardless of whether a single electrode 

(bipolar) or six hexagonally arranged electrodes (hexpolar) 

were used as ground electrodes (Fig. 3B). Passive 

electrotonic responses were recorded when the size of the 

dendritic field was set to 100 µm (Fig. 3B).  

Maps of the effective Ve are presented at the end of the 

stimulus pulse for all simulation setups (Fig. 3A). Although 

the general pattern of distribution of Ve appears to be 

identical between simulations using a single return electrode 

or hexagonal return electrodes, the value of Ve measured at a 

point directly below the center of the stimulus electrode is 

slightly different which could explain why RGC action 

potentials were triggered when a larger dendritic field was 

used in the convolution integral. When the radius was 100 

µm, Ve was -0.79 V and -0.78 V for single and hexagonal 

return electrodes respectively. However when the radius was 

increased to 200 µm, Ve increased to -0.88 V and -0.87 V for 

bipolar and hexpolar return configurations respectively.   

IV. DISCUSSION  

The continuum approach is used extensively in cardiac 

electromechanical [19] and smooth muscle and 

gastrointestinal electrophysiology [20] modeling. However 

its use in neuronal modeling is less widely adopted because, 

in general, neurons are not connected by gap junctions and 

therefore neuronal networks do not behave as an electric 

syncytium like cardiac or smooth muscle tissue. The 

presence of gap junctions allows modeling of syncytium 

tissues using either the bidomain or monodomain 

formulation of the cable equation of electric propagation and 

this will determine the electrotonic input experienced by 

each cell/element from adjacent cells/elements. However in 

the case of neural networks a single neuron may receive 

input from a number of neurons depending on the size and 

morphology of its dendritic tree and the types of synaptic 

inputs it receives. Therefore when implementing finite 

element neuronal models the electrotonic loading on any 

particular element should not be set to be received strictly 

from adjacent elements. The traditional approaches of using 

compartmental discrete models (e.g. [21, 22]) and Cajal 

branching patterns [23] to simulate dendrites of neurons 

cannot be easily applied in continuum electrophysiology 

        
 

Fig. 3 Simulation results using a combination of two dendritic field sizes and return electrode configurations. A. Effective Ve distribution profiles 

measured at the end of the stimulus pulse (0.5-0.6 ms). B. Membrane potential observed at a point below the centre of the central stimulating 

electrode.   
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modeling. Therefore there is a need to develop numerical 

algorithms to estimate dendritic fields and synaptic 

connections in continuum electrophysiology models.  

Towards this aim a convolution based method is described 

and implemented in a continuum model of electrical 

stimulation of the retina which has an active RGC layer and 

conductive layers describing other retinal layers. 

The effective potential gradient of RGCs is estimated 

using a convolution integral to calculate the average 

extracellular potential at distal ends of the neuron. The 

dendritic tree is assumed to be spherical around the soma. 

Electrical stimulation was delivered using circular electrodes 

in the suprachoroidal space. Either a single or six electrodes 

arranged in a hexagonal pattern around the stimulating 

electrode were set as ground electrodes. The volume of the 

convolution integral determines the size of the dendritic field 

and thus the effective extracellular potential gradient and 

electrotonic input into each RGC’s soma which in turn 

determines whether there is sufficient excitatory input to 

trigger an action potential in RGCs.  

The threshold for excitation is found to be higher when a 

convolution integral is used to estimate the dendritic field 

compared to using a weighted average of four points 

surrounding the soma as previously used by our group. 

V. CONCLUSION  

This is a preliminary study to test the feasibility of 

implementing a convolution integral approach to calculate 

the effective extracellular gradient experienced by the 

dendritic tree of each RGC cell in a retinal continuum model. 

Future work includes incorporation of this approach in a 

continuum network model of the retina with synaptic 

connections between different neuron types in the network. 

In addition, future work will involve updating the thickness 

of various retinal layers in the model to reflect changes that 

occur during disease. This will enable more realistic 

representation of retinal neuronal circuitry and thus help in 

testing the efficacy of various stimulation strategies used in 

vision prosthetic devices.  
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