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Abstract— It is a challenging task to plan a radiofrequency
(RF) ablation therapy to achieve the best outcome of the
treatment and avoid recurrences at the same time. A patient
specific simulation in advance that takes the cooling effect of
blood vessels into account is a helpful tool for radiologists, but
this needs a very high accuracy and thus high computational
costs. In this work, we present various methods, which improve
and extend the planning of an RF ablation procedure. First,
we discuss two extensions of the simulation model to obtain a
higher accuracy, including the vaporization of the water in the
tissue and identifying the model parameters and to analyze
their uncertainty. Furthermore, we discuss an extension of
the planning procedure namely the optimization of the probe
placement, which optimizes the overlap of the tumor area with
the estimated coagulation in order to avoid recurrences. Since
the optimization is constrained by the model, we have to take
into account the uncertainties in the model parameters for the
optimization as well. Finally, applications of our methods to a
real RF ablation case are presented.

I. INTRODUCTION

Due to the increasing clinical importance of image-
guidance for thermal ablation therapies such as radiofre-
quency (RF) ablation, it is an essential task to provide
a software tool which focuses on the main difficulties of
planning the treatment. To ensure a complete destruction of
the tumor, a precise and patient specific treatment planning
is necessary. In the case of RF ablation the success of the
therapy depends mainly on the cooling effects of the vascular
structures in the vicinity of the tumor. In the presence of
close vascular structures a proper placement of the probe can
only be made by experienced radiologists; in the literature
local recurrence rates up to 60% are reported [3]. Due to
the cooling effects a simulation in advance and a proposal
for an optimal probe placement can be very helpful for the
radiologist; such a system can act as a planning tool as well
as a training tool for less experienced radiologists. A simu-
lation of the therapy in advance will improve the planning
and an optimization would be an additional supplementary
benefit for the planning. Both tools together will allow for a
smaller recurrence rate and thus a higher quality treatment, in
particular in difficult cases. For the simulation as well as for
the optimization which is based on the simulation, the patient
specific anatomy needs to be incorporated. In the following
we will present different aspects which will improve the
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Fig. 1. Screenshot of our software demonstrator SAFIR showing the
result of the RF ablation simulation performed on a real clinical dataset.
c©Fraunhofer MEVIS

existing finite element simulation [4] and the planning and
optimization of the RF ablation, which is already included in
the software planning tool SAFIR [8] (cf. Fig. 1). A review
on existing computer assisted planning and intervention of
liver tumor ablation can be found in the paper of Schumann
et al. [9].

II. MODELING RADIOFREQUENCY ABLATION

An accurate bio-physical model and an efficient numerical
implementation are the basis for the advanced topics pre-
sented in the following sections. Thus, we review our basic
model here.

A. A Time-dependent Model for RF Ablation

We consider RF ablation in the domain D by a probe
Dpr containing one (monopolar) or two electrodes (bipolar)
Del and which is cooled internally. A sketch of the different
parts of the computational domain is given in Fig. 2. For the
electric potential ϕ induced by the RF probe we consider the
usual electrostatic equation [2]

−∇ · (σ∇ϕ) = 0 in D\Del , (1)

where σ is the electrical conductivity and with suitable
boundary conditions. We set ϕ = ±1 on the positive and
negative electrodes boundary respectively, and ϕ = 0 on the
domain boundary, assuming that there is a neutral electrode
at the boundary in the monopolar case. For bipolor electrodes
a Robin boundary condition is used see e.g. [4]. This
arbitrary choice of ϕ at the electrode boundary Γel requires a
scaling of the electric power as described in [4]. The electric
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Fig. 2. Sketch of the different parts of the computational
domain. c©Fraunhofer MEVIS

power acts as right hand side Qrf of the bio-heat transfer
equation. Thus, it is given by Qrf = sσ |∇ϕ|2.

We obtain the temperature distribution T inside the com-
putational domain from the bio-heat transfer equation

ρc∂tT −∇ · (λ∇T ) = Qrf +Qperf in D\Dpr , (2)

where c is the thermal capacity and ρ the density. On the
probe boundary we set a Dirichlet boundary condition ac-
cording to the probes cooling temperature and on the vascular
system Dv we set a Dirichlet boundary condition according
to the body temperature. On the outer domain boundary Γout
we prescribe a homogeneous Neumann boundary condition,
assuming that there is no heat flux far away from the probe.
The additional term Qperf on the right hand side is due to the
perfusion of the tissue. Typically, this perfusion is modeled
using Pennes’ approach [4]. The material parameters depend
nonlinearly on the state of the system, i.e. they depend on the
position inside the domain, the temperature and vaporization
state (cf. [4]).

The implementation of this model and the presented
extensions utilize composite finite elements (CFEs) [7]. CFEs
allow to use structured grids even for complicated shaped do-
main boundaries or material parameter discontinuities inside
the domain.

B. Vaporization

The vaporization of the water has a significant influence on
the outcome of the ablation. In dry regions, where the water
has evaporated, the electrical conductivity σ discontinuously
drops down to a value close to zero and thus it is not
possible to apply additional electric power. We incorporate
the vaporization in the model by tracking the interface
between vapor and liquid with a level set approach and by
evolving the interface based on the Stefan condition [10]. The
difference of the density of liquid vapor and water induces
an additional velocity field inside the computational domain
that transports mass from the vicinity of the interface into the
surrounding tissue. The vapor bubble and the velocity field
around the applicator after heating with a maximal power of
40W for 13 minutes are depicted in Fig. 3.

C. Material parameters

To allow for a patient specific modeling the patient’s
anatomical structures as well as the specific material pa-

Fig. 3. Vapor extent (transparent-gray) around the electrode (yellow) after
13min at a maximal power of 40W. Due to the different densities of liquid
and gaseous water there is a flow field pointing away from the interface. The
colored arrows show the flow field in two orthogonal slices. c©Fraunhofer
MEVIS

rameters need to be taken into account. The material pa-
rameters constitute a major challenge since they are in
general unknown and vary during the treatment due to their
temperature dependency. Measurements of these parameters,
as e.g. the thermal conductivity λ are found in the literature
and there also exist results about the type of temperature
dependency [11]. However, most of the parameters can not
be directly measured for an individual patient and thus need
to be found by different and indirect observations. Here we
formulate a parameter identification problem to estimate the
unknown properties from temperature measurements during
the treatment [12]. During the ablation it is possible to moni-
tor the progress with magnetic resonance (MR) thermometry.
These temperature measurements Tmeas are used to fit the
parameters σ and λ to the given data, by minimizing a
tracking type functional

min
λ ,σ

‖T −Tmeas‖2
H1(D)+Regularization(λ ,σ) (3)

at a certain time point and with additional regularization
for the parameters. The norm H1(D) denotes a norm in the
Sobolev space W 1,2(D). The whole problem is constrained
by the system of partial differential equations (PDEs) (1)
and (2). First results on experiments in Agar gel show great
promise for an identification of the parameters and therewith
an improvement of the whole model, see Fig. 4.

III. OPTIMIZATION OF THE PROBE PLACEMENT

In general, the aim of an RF ablation therapy is to find
the best compromise between a complete destruction of the
tumorous area including a sufficiently large safety margin
(in order to avoid recurrences) and affecting a minimum of
native tissue. Thus, for an optimal outcome of the therapy,
an accurate probe placement planning is needed. Since we
want to optimize the probe location, we first need some
information about the ”quality” of an RF ablation which can
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Fig. 4. The given temperature distribution (red with triangles) and the tem-
perature distribution corresponding to the identified electrical conductivity
(green with asterisks). The values are measured along a line in the vicinity
of the applicator through the 3D volume of the temperature distribution.
c©Fraunhofer MEVIS

be obtained by evaluating a suitable objective function. We
assume that the tissue is destroyed if temperatures higher
than 50◦C are reached. At this temperature, the proteins of
the tissue and thus tumor cells coagulate within a couple of
seconds. In order to get the optimal outcome of the ablation,
the temperature in the tumor region shall be high and in
particular above this critical temperature.
For the optimization we consider a steady state model of (1)
and (2) for the estimation of the coagulation and model a
non-cooled applicator. We define the following temperature
based objective function [1]:

f (T ) = ln
(∫

Dt

e−αT (x)dx
)

with α > 0 . (4)

Searching for an optimal probe placement (p,d) that min-
imizes this objective function means maximizing the mini-
mum temperature inside the tumor region Dt , which yields
a uniform tumor heating (again see [1]). The parameters
of the probe position (p,d), where p is the center of the
electrode’s active zone and d the unit normal pointing in the
direction of the shaft, only appear in the boundary condition
of the electric potential equation (1). Moreover, α > 1 yields
a stronger penalization of low temperatures in Dt , while
α < 1 yields a lower penalization of low temperatures in the
tumor region. The minimization of the objective function f
is performed by a gradient descent method combined with a
multi-level approach where the gradient is calculated using
shape derivatives [1]. One example of the solution of our
optimization method is depicted in Fig. 5.

A. Sensitivity analysis

As already seen in Sect. II-C the modeling of the tissue
properties poses a particular challenge, since they are indi-
vidually different and moreover depend on the current state
of the tissue. Values used in simulations are often based on
experiments on animal or cadaveric human tissue. Moreover,
experimental measurements are always accompanied with a

Fig. 5. Optimization for an example based on real patient data with
segmented tumor (transparent-gray) and surrounding vascular system (beige-
brown). Here, we see a monopolar probe with the corresponding 50◦C-
isosurface of the temperature (transparent-yellow). On the left, we see our
chosen starting placement and on the right, the solution of our proposed
optimization method. c©Fraunhofer MEVIS

certain range of errors. Consequently, the question arises
how sensitive are the results obtained from simulations and
optimizations with respect to uncertain tissue properties. In
the following, we will analyze the sensitivity of our above
described optimization with respect to an uncertain electrical
conductivity σ = (σn,σt ,σv) in native liver tissue, tumor
tissue and vessels (see also [1]). Thereto, we assume the
electrical conductivity of the three different tissue types to
be probabilistically distributed within ranges taken from the
literature. Note, that a sensitivity analysis w.r.t. other uncer-
tain tissue properties is completely analog. Substituting the
probabilistically distributed values into the PDE-model for
the simulation of RF ablation yields a system of stochastic
partial differential equations (SPDEs) (as studied in [1]).
By evaluating the SPDE system for certain realizations of
the electrical conductivity σ , we can analyze the sensitivity
of the system w.r.t. variations in σ . For the discretization
and interpolation in the stochastic space, we use an adaptive
sparse grid collocation (ASGC) approach presented by Ma
and Zabaras [6], which combines the power and sampling
character of collocating methods with some of the theoretical
properties of the generalized polynomial chaos [13]. More-
over, for the sensitivity analysis of the optimal probe orien-
tation we perform a visualization of the probability densitiy
function (PDF) by a color coding of the sphere (green colors
indicate unlikely orientations, whereas red colors show likely
orientations; cf. color ramp on the bottom right of Fig. 6).
For the sensitivity analysis of the optimal probe position we
consider the covariance matrix of the joint distribution of
the probe position’s components. The covariance matrix is
visualized as an ellipsoid, whose principal axes are aligned
with the matrix’ eigenvectors and whose extension is scaled
with the square root of the corresponding eigenvalues. This
can be interpreted as a principal component analysis of the
PDF, i.e. large ellipsoids imply that the distribution has a
high variance in the corresponding direction, while small
ellipsoids indicate narrow distributions. A first result of the
sensitivity of the optimal probe position and orientation
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Fig. 6. Visualization of the sensitivity of the optimal probe position and
orientation w.r.t. variations in σ . On the left the covariance matrix of the
corresponding probability density function is represented via blue ellipsoid.
On the right the corresponding probability density function is represented
via color coding of the sphere (taken from [1]).

w.r.t. variations in the electrical conductivity is depicted
in Fig. 6. Here, we have computed our optimization from
above for 8470 different values of σ (which corresponds
to a certain refinement level in the stochastic space). For
a detailed description of our sensitivity analysis and all
parameter settings in the calculation the results of which are
shown here, we again refer the reader to [1].

IV. DISCUSSION

We have discussed different approaches for the improve-
ment and extension of the planning of RF ablation. Besides
a robust forward simulation an assistance to find the optimal
probe placement is needed to achieve the best results for
the patient. In our software demonstrator SAFIR [8] (see
Fig. 1) the interactive RF applicator positioning and the
numerical estimation of the coagulative necrosis are already
included. For the simulation of the temperature distribution
and therewith the destroyed area, the above described time
dependent RF ablation model is used. Especially the vascular
structures are important for a realistic and patient individual
simulation due to their cooling effects for RF ablation. For
a more patient specific and more realistic modeling we are
aiming at including all other methods which optimize the
outcome of the therapy by means of an improved model e.g.
vaporization and patient specific adaption of the model via
parameter identification. The presented extended model is
solved with a composite finite element method that allows to
resolve complicated shaped domains with regular grids and
accounts for the anatomical structures, which are given by
the preprocessed patient data. The optimization is included
already in a simplified way in SAFIR where the RF ablation
model is replaced by an approximation. The incorporation of
the above described optimization of the probe placement is a
further step towards an improved planning system, since an
optimization which is based on an approximated temperature
distribution is less flexible and does not match the patient
individual properties in the way the described PDE model

does. However, for a reliable suggestion of the best probe
position we need to take into account the surrounding risk
structures and anatomical restrictions as ribs, lung, and
intestinal system. Further challenging tasks are the validation
of the simulation and the speed up in computational time
for the forward model and the optimization. Some first
validations of the model have been performed [5] but further
investigations are needed in particular for all new methods
and extensions.
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