
  

 

Abstract—Changes in gait parameters have been shown to be 

an important indicator of several age-related cognitive and 

physical declines of older adults. In this paper we propose a 

method to monitor and analyze walking and cycling activities 

based on a triaxial accelerometer worn on one ankle. We use an 

algorithm that can (1) distinguish between static and dynamic 

functional activities, (2) detect walking and cycling events, (3) 

identify gait parameters, including step frequency, number of 

steps, number of walking periods, and total walking duration per 

day, and (4) evaluate cycling parameters, including cycling 

frequency, number of cycling periods, and total cycling duration. 

Our algorithm is evaluated against the triaxial accelerometer 

data obtained from a group of 297 middle-aged to older adults 

wearing an activity monitor on the right ankle for approximately 

one week while performing unconstrained daily activities in the 

home and community setting. The correlation coefficients 

between each of detected gait and cycling parameters on two 

weekdays are all statistically significant, ranging from 0.668 to 

0.873. These results demonstrate good test-retest reliability of 

our method in monitoring walking and cycling activities and 

analyzing gait and cycling parameters. This algorithm is 

efficient and causal in time and thus implementable for real-time 

monitoring and feedback.  

I. INTRODUCTION 

Healthcare systems are facing many new challenges as the 
world’s population ages. In the United States, the older 
population, aged 65 and over, numbered 39.6 million in 2009, 
and is expected to be 72.1 million by 2030; 80% of which 
have one or more chronic conditions [1]. The national cost for 
elderly healthcare has been estimated over $836 billion [2]. 
Gait changes in older adults have been shown to be an 
important indicator of several age-related cognitive and 
physical declines [3]. Gait characteristics have also been 
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shown associated with health status [3], falls [4], frailty [5], 
and survival [6]. Older adults at risk display reduced stride 
length and walking speed, decreased walking endurance and 
increased gait variability [7]. The long-term monitoring of 
walking activities in daily life of older adults in the home and 
community setting has become increasingly important in 
predicting clinical outcomes and life expectancy that 
incorporates health and function, and promoting the Quality of 
Life (QoL) of individual patients. The objectivity and 
comprehensiveness of activity monitoring is expected to be 
greatly improved by the use of small, wearable wireless 
systems that automatically identify and evaluate functional 
activities such as walking events and gait parameters.  

This paper focuses on the development of an efficient 
algorithm that can (1) classify static and dynamic functional 
activities, (2) detect walking and cycling events, (3) identify 
gait parameters, including step frequency, number of steps, 
number of walking periods, and total walking duration per day, 
and (4) evaluate cycling parameters, including cycling 
frequency, number of cycling periods, and total cycling 
duration, based on the signals from a triaxial accelerometer 
positioned on each participant’s right ankle. This algorithm 
has been applied to the week-long accelerometer data from 
unconstrained daily activities of a group of 297 middle-aged 
to older community dwellers in the home and community 
setting. The remainder of the paper is organized as follows: 
the experimental design is explained in Section II; the method 
to process acceleration data in order to detect walking and 
cycling events and evaluate gait and cycling parameters is 
explained in Section III; the results are presented in Section 
IV; Section V concludes the paper. 

II. EXPERIMENTAL DESIGN 

A prospective longitudinal cohort study investigating 
predictive factors of longevity and disease in old age was 
conducted by the Department of Gerontology and Geriatrics, 
Leiden University Medical Center, the Netherlands. Within 
the Leiden Longevity Study** families in which at least two 
long-lived siblings were alive were recruited, fulfilling the 
age-criterion of 89 years for males and 90 years for females 
[8].  Furthermore, the children from the long-living subjects, 
and the partners thereof were included. Written informed 
consents were obtained from each subject. A group of 297 
middle aged to older adults (147 male, 150 females, 45-84 
years old, mean age 65.7 years) wore a Gravity Estimator of 
Normal Everyday Activity (GENEA) just above the lateral 
malleolus of the right ankle. Subjects were instructed to wear 
this monitor for a week, consecutive seven days, while they 
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performed unconstrained daily activities in the home and 
community setting. The GENEA is developed by Unilever 
Discover (Colworth, United Kindom), manufactured and 
distributed by ActivInsights Limited (Kimbolton, 
Cambridgeshire, United Kingdom). It is comprised of a small 
(36 x 30 x 12 mm), light weight (16 grams) watch-shaped 
body-worn triaxial digital accelerometer  (dynamic range of

±6 gn) with the sampling frequency at 10, 20, 40 or 80Hz and 

has the memory capability to save 0.5 Gbyte of raw data. The 
built-in rechargeable lithium battery can support at least 8 
days of reliable data logging at 80Hz. The week-long raw data 
were uploaded afterwards and converted into time series 
matrices in Matlab (MathWorks, Natick, MA, USA) for 
off-line analysis.  

III. METHOD 

The triaxial accelerometer measures accelerations in the 
frontal, sagittal and vertical directions from human 
movements and external perturbations against the Earth’s 
gravity (gn). Fig. 1 illustrates the steps in the algorithm to 
identify walking and cycling events and parameters from the 
accelerometer data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.   Activity Classification Flowchart 

A. Preprocessing 

The raw digital acceleration signals are calibrated to the 
Earth’s gravity. A second-order forward-backward digital 
low-pass Butterworth filter is applied to the calibrated signals 
to filter out noises beyond the frequency range of acceleration 
from human movements. 

B. Validation of Wearing  

The validation that the subject is wearing the 
accelerometer is a prerequisite to monitor and analyze any 
activity of daily life, such as walking and cycling. We 
designed and applied a criterion with the following elements 
to establish wearing time.  

 (1) Within a time window of 1 s, the square sum of the 
three axes remains in the range from 0.9 to 1.1 gn; 

(2) The standard deviation of each axis signal in the same 
second is less than 0.003 gn.  

If (1) and (2) are both satisfied in a continuous interval of 
30 minutes, the sensor is deemed to be non-wearing during the 
interval. Otherwise, the accelerometer is regarded as being 
worn by the participant and functioning properly. 

C. Classification of Static and Dynamic Activities 

Once the accelerometer is validated as being worn by the 
subject, we classify each 1s interval into two coarse-grained 
categories: (1) static activities, such as standing, sitting, and 
lying down, or (2) dynamic activities, such as walking, cycling 
and transitions between activities. Static activities 
qualitatively show a flatter acceleration time series for all 
three axes, while dynamic activities yield large differences 
between consecutive samples. The topmost graph in Fig. 2 
shows the accelerometer data in the frontal (X) axis, sagittal 
(Y) axis and vertical (Z) axis when a participant transits from 
sitting to standing at approximately 4s and begins to walk at 
15s. To capture the differences of variability in time series, a 
Signal Magnitude Vector (SMV) of each sample point is 
calculated using eq.(1), which is the square root of the squared 
sum of the difference of x-, y- and z- values between the 
current i

th
 sample and its previous (i-1)

th
 sample. 

 



The Signal Magnitude Area (SMA) is obtained by 
summing SMV in each second as eq.(2), where Fs is the 
sampling frequency of the accelerometer.  



The functional activity classified in each second by the 
threshold test is shown in Fig. 2.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Classification of static and dynamic activities 
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D. Detection of Walking 

Human walking is defined as bipedal, biphasic forward 
propulsion of centre of mass of human body, in which there 
are alternate sinuous movements of different segments of the 
body [9]. Accelerometers can measure accelerations from 
these movements; particularly the vertical axis is most 
sensitive to the changes of the center of mass. During walking, 
a stride cycle begins and ends with the heel strike from the 
same foot, which is defined as when the heel contacts the 
ground [9]. A step cycle begins with the heel strike from one 
foot and ends with that from the other.  

Once a consecutive set of five 1s periods is classified as 
dynamic activities, spectrum analysis is applied to the data of 
this interval. The Power Spectrum Density (PSD) is estimated 
by the Fast Fourier Transformation (FFT), using the Welch 
method with a Hann window [10]. The PSD of the vertical 
acceleration has significant components at the primary gait 
frequency (GF) and the secondary GF. The primary GF 
represents the stride frequency of walking, and the secondary 
GF represents the step frequency. The acceleration signals of a 
detected walking event are shown in Fig. 3 with its PSD.  

The stride frequency and step frequency of gait events are 
captured from this PSD. At the end of each walking period, 
gait parameters including walking duration, the number of 
steps and strides, and the number of step and strides per 
minute (cadence) are calculated. 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Acceleration of gait and PSD 

E. Detection of Cycling 

The cycling activity is another type of common periodic 
daily activity, which must be distinguished from walking 
when analyzing parameters of different dynamic activities. 
The absence of heel-strike/toe-off events and swing/stance 
phases differentiates the cycling accelerations from walking 
accelerations in both time series and the PSD. Fig. 4 
demonstrates the accelerations in the three axes and the PSD 
for the vertical axis of a cycling event. The repeatedly constant 
pedaling leads to the only significant component in the 
frequency spectrum, evaluated as cycling frequency. 

If the lasting duration of dynamic activity is less than 5s or 
not detected as either walking or cycling event, the time 
interval is labeled as unidentified dynamic. 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Acceleration of cycling and PSD 

IV. RESULTS 

Reliable measurements would detect the consistency in 
walking and cycling events and parameters between two 
weekdays, due to the fact that functional activities of an 
individual remain relatively constant over time. A week of 
collected data was partitioned into daily sets using the interval 
of 0:00AM to 11:59PM. We applied our activity classification 
algorithm to each daily set. For each day, our method 
identified the following variables with starting and ending 
time stamp: 

(1) Non-wearing time,  

(2) Daily walking event and gait parameters of  

 mean step frequency 

 total steps number 

 number of gait periods 

 total gait duration 

 (3) Cycling events on a subset of 76 subjects and cycling 
parameters of 

 mean cycling frequency 

Based on the measurement starting date and time in the 
subject log files, comparisons were made between each 
parameter on two weekdays, using IBM SPSS Statistics 19.0 
(IBM, NY, USA). The intraclass correlation (ICC) 
coefficients were estimated for correlations using a two-way 
mixed model for absolute agreement. The Wilcoxon 
signed-rank test was used to evaluate differences between the 
two weekdays at a 0.05 level of significance. The correlation 
coefficients in Table I were all statistically significant and 
ranged from 0.668 for total walking duration to 0.873 for 
mean step frequency. The test-retest results present the failure 
to reject the null hypothesis that any parameter between two 
weekdays is consistent by the significance level of 0.05. Fig. 5 
shows scatter plots of each gait parameter on two weekdays, 
where the horizontal axis stands for the gait parameter on the 
weekday 1 and the vertical axis for that on the weekday 2. 
Linear regressions are derived for each scatter plot using 
Cronbach’s Alpha in Table I.  

160



  

 

TABLE I.  TWO WEEKDAY CORRELATION COEFFICIENTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Scatter plots of gait parameters on two weekdays 

V. DISCUSSION 

The high correlation coefficients demonstrate good 
test-retest reliability and consistency in the detection of 
walking and cycling activities, and analysis of gait and cycling 
parameters, when our method is applied to the ankle 
accelerometer data obtained from the daily unconstrained 
functional activities of middle-aged to older community 
dwellers. Additionally, due to the sequential decision steps, 
this method is robust in verifying wearing versus non-wearing, 
and classifying static versus dynamic functional activities.  

This classification algorithm is efficient and causal in time 
and thus implementable on a functional activity monitor 
(FAM) system for real-time continuous monitoring. The FAM 
system constitutes multiple low-power body-worn kinematic 
sensors wirelessly connected to a smartphone [11]. Applying 
the signal processing decision tree in [12], a software 
application has been developed for an iPhone (Apple Inc, 
Cupertino, CA, USA) to provide personal calibration, store 
sensor signals, trigger alerts when movement disorders occur 
and continuously identify functional activities including 
postures, transitions, and walking in the real time. 

The device enables augmented therapy provided by the 
rehabilitation practitioners (e.g., physical therapists) as well as 

the evaluation and management of functional activities. As 
one application, the FAM system is capable of continuously 
detecting unconstrained over-ground walking events, 
monitoring gait parameters, and providing real-time feedback 
on the endurance of walking. The smartphone detects the time 
in seconds when a suggested amount (e.g. 10 minutes) of 
walking exercise starts and provides an audio feedback and a 
visual message at the end of the desired time interval to 
indicate the completion of the endurance exercise.  

In our on-going research, we plan to expand our library to 
monitor a large variety of functional activities, including 
upper extremity movements. We will explore efficient 
configurations of different numbers of sensors and at various 
locations on the body. We will also use the FAM system to 
monitor changes and progression in functional activities, e.g., 
the responsiveness of exercise treatment programs. 
Advantages of using activity monitors include low cost, ease 
of use and wear by participants, non-intrusiveness, and 
capability to provide real-time feedbacks for movement 
disorders. It has tremendous potential to be largely used by 
older adults in the home and community setting in different 
perspectives of diagnosis, prognosis, and other related studies 
of neuromuscular and physical function.  
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Variable N ICC 
P 

value 

Cronbach’s 

Alpha 

Mean Step Frequency 297 0.873 < 0.001 0.874 

Total Steps Number 297 0.681 < 0.001 0.681 

Gait Periods 297 0.733 <0.001 0.733 

Total Gait Duration 297 0.668 <0.001 0.667 

Mean Cycling 
Frequency 

76 0.763 <0.001 0.761 
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