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Abstract— This paper introduces the stochastic Gabor 

function (SGF), an excitation waveform that can be used to 

design optimal excitation pulses for Electrical Impedance 

Spectroscopy (EIS) of the brain.  The SGF is a Gaussian 

function modulated by uniformly distributed noise; it has wide 

frequency spectrum representation regardless of the stimuli 

pulse length.  The SGF was studied in the time-frequency 

domain.  As shown by frequency concentration measurements, 

the SGF is least compact in the sample frequency phase plane.  

Numerical results obtained by using a realistic human head 

model indicate that the SGF may allow for both shallow and 

deeper tissue penetration than is currently obtainable with 

conventional stimulus paradigms, potentially facilitating tissue 

subtraction assessment of parenchymal dielectric changes in 

frequency.  This could be of value in advancing EIS of stroke 

and hemorrhage.   
 

I. INTRODUCTION 

Electrical impedance spectroscopy (EIS) is being studied 

as a diagnostic tool for the evaluation and characterization of 

ischemic and hemorrhagic tissues [1, 2]. EIS estimates the 

macroscopic dielectric constants from surface voltage 

measurements between electrode pairs positioned on the 

surface of an object in response to the applied probe current, 

typically using the four-terminal system [3].  Unfortunately 

EIS is maximally sensitive to skin/bone and is not very 

sensitive to brain parenchymal changes due to the limited 

penetration of the probe current.  We propose an ideal probe 

current design based on the concept of dual energy.  In 

Computed Tomography (CT) dual energy is a relatively new 

imaging technique that uses two different x-ray tubes in a 

single CT unit.  Bone can be identified through the use of 

dual energy CT based on its spectral properties and can be 

removed from an angiogram [4].  This paper illustrates, both 

in theory and with numerical examples, the design of a dual 
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energy pulse for EIS based on the stochastic Gabor function 

(SGF) [5].  The SGF is a Gaussian function which has been 

modulated by uniformly distributed noise.  The SGF reaps 

the benefits of a very wide frequency bandwidth while 

retaining a non-narrow pulsed envelope in time.    The 

behavior and propagation have been studied with Finite 

Differences Time Domain (FDTD) [5] and we show 

examples of pulse penetration using the SGF in a realistic 

human head model.   

This paper is organized as follows.  Section II defines the 

stochastic Gabor function.  In section III, statistical 

parameters of the Gaussian, Gabor and stochastic Gabor 

function stimuli are delineated.  Finally, Section IV shows 

the dual energy example stimuli using a realistic head 

model. 

II. THE  STOCHASTIC GABOR FUNCTION 

The stochastic Gabor function (Fig.  1) is defined as 

[5]: 
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where  Nk :1  is the frequency variable and 

kS  is the 

discrete Fourier transform, or FFT, of the autocorrelation 

function of the white noise process 
n ; 

/1
kG is the FFT of



ng .  The whitening of the Gaussian in eq.  (1) flattens the 

frequency response.  The short-time Fourier Transform is 

used to determine the sinusoidal frequency and phase 

content of a signal inside a time window, following the 

spectral changes of the signal over time.  The short-time 

Fourier Transform of the stochastic Gabor function is: 
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where  Nm :1  specifies the position of the time window 

and wn is the time window function such that 1
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and the short-time power spectral density becomes: 
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The stochastic Gabor function has a Gaussian envelope in 

the time domain; its frequency representation (Fig.  2, 

bottom) is very uniform.  A Gaussian (Fig.  2, top) has a 

Gauss function representation in both time and frequency 

domains.  The Gabor function (Fig.  2, middle), a harmonic 

function with frequency 0 multiplied by a Gaussian, has the 

same time-frequency distribution as the Gaussian but shifts 

in frequency by 0. 

 

III. THE TIME-FREQUENCY RESOLUTION 

One of the main advantages of the Gaussian and Gabor 

functions is their time-frequency localization.  In this 

section, the stochastic Gabor function is studied in terms of 

localization in the time domain, which can be measured by 

estimating the time-frequency resolution to select the value 

for , or pulse width of the stochastic Gabor function.  A 

more uniform sampling in frequency corresponds to a source 

excitation with lower concentration in the sample frequency 

phase plane [7]: 
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where  is an arbitrarily small constant introduced for 

regularization.  Eq.  (7) has a form similar to the entropy 

function, )log()( iii pppE  ; however, the resulting 

quantity is an estimate of frequency concentration when the 

hermitian vector 
n  is transformed into a real vector using 

the square norm.  When all frequency values of 
n  are 

constant, 0)( nH .  Conversely, )( nH   reaches 

maximal value when the function 
n  is concentrated at a 

single frequency point.  For instance, zero frequency 

concentration occurs when  0001n , where 

 1111n  results in 0)( nH .  High frequency 

concentration occurs when  1111n , in which 

 
Fig.  1:  The stochastic Gabor function [5] . 

 

 

 
Fig.  2: Spectrograms of: (top) Gaussian (=12.8, 

N=64,000), (middle) Gabor (0=0.1) and (bottom) 

stochastic Gabor function    [5] . 
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case  0004n   and results in 4.44)( nH  

(with  = 10
-10

). 

Fig.  3 shows the difference in frequency concentration as 

a function of the pulse width .  In the case of larger  

values, the stochastic Gabor function --virtually flat in 

frequency --exhibits much lower concentration in the 

sample frequency phase plane than either the Gaussian or 

Gabor functions.  The Gabor is less concentrated in 

frequency than the Gaussian, as it is composed of two 

Gaussians centered at 
0  and 

0 .  As the pulse width 

approaches zero, all functions approach 
nn   such that 

the frequency concentration also approaches zero.  The 

concentration property allow for shorter exciting pulses 

have the advantage of reducing the number of time steps 

needed for FDTD convergence [5].      

IV. NUMERICAL RESULTS 

Fig. 4 illustrates how the stochastic Gabor function can 

modulate the penetration depth in a realistic head model 

[8] when used as a probe current pulse in EIS.  The results 

are shown in terms of the Electric Field in and around the 

head using two different values of the σ for the SGFs (top 

and middle), which resulted in a different current density 

penetration profile between the two SGFs (bottom).  The 

low energy SGF was defined with σ = 128 and the high 

energy with σ = 12.8 both with Ns = 10
5
. 

  

The computation times for both SGF stimuli were 5 

minutes for Ns = 105, respectively, using an eight cores 

Dell Precision T7500 desktop computer with 48 gigabyte 

of RAM.  

 

V. CONCLUSION 

A new excitation pulse, the stochastic Gabor function, 

has been introduced.  It has a marked cylindrical shape in 

the time-frequency domain, produces steady values in 

frequency, and has a Gaussian shape in time.  The 

stochastic Gabor function can be used to design pulses for 

electrical impedance spectroscopy with greater penetrating 

depth than is currently standard.  Examples of SGF with 

different energies exhibit different penetration in the head 

and thus may be used to estimate more focused 

parenchymal tissue impedances.  This has the potential to 

help make portable, noninvasive detection and monitoring 

of stroke and intracranial hemorrhage a clinically useful 

tool in the ambulance, battlefield, or intensive care unit 

settings. 
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Fig.  4: Example of a low energy SGF (top) and a high energy SGF (middle) with a marked increase of tissue 

penetration at high energy compared to the lower energy pulse for the magnitude of the electric field integrated over 

time in the same logarithmic scale. (Bottom) Normalized difference map for the current densities Jr integrated over 

time between the low energy and high energy  SGFs.  
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