
3D Nonlinear Complex-Diffusion Filter on GPU

Pedro Rodrigues1, Pedro Serranho2, and Rui Bernardes3

Abstract—The ramp preserving 2D nonlinear com-
plex-diffusion filter introduced by Gilboa et al. (2004) was
extended to 3D (Maduro et al., 2012). We propose a graphical
processing unit implementation of the 3D filter for an overall
faster processing in order to be used in a clinical setting.

We perform a search for the best diffusion parameters (the
number of iterations and spread of the diffusivity) for the 2D
and 3D filters and compare their results resorting to synthetic
spectral-domain optical coherence tomography volumetric data
and several quantitative metrics.

Execution time improvement of our implementation versus
a single-core approach is also presented, showing that it allows
for a full 3D volume to be processed under 7.5 seconds.

I. INTRODUCTION

Image and volume filtering frequently represent the initial

steps in most image processing systems and often play a

crucial role for the respective systems.

While the majority of medical imaging systems are still

based on 2D modalities, e.g., color fundus photography, 3D

imaging systems are now taking their place in the daily

clinical practice, e.g., OCT (optical coherence tomography),

ultrasound, and computer tomography systems.

The increasingly larger sets of data per patient and scan do

represent, therefore, an added challenge due to the increase

in processing time associated to the larger amount of data,

in the one hand, and due to the increase in complexity of

algorithms, on the other hand. In consequence, data process-

ing times may render these complex procedures difficult to

apply in the analysis of a large number of patients (even in a

research environment) and clearly making it difficult (if not

impossible) to use in the clinical practice.

With the recent introduction of GPU (graphical processing

unit) systems that brought into the daily practice the power

of massive parallel computing, a window of opportunities

emerged opening the door for more complex and advanced

processing methods to be applied resorting to not exclusive

computing facilities.

*This work was supported by the Fundação para a Ciência e a Tecnologia
under the research projects PTDC/SAU-ENB/111139/2009 and PTDC/SAU-
BEB/103151/2008 and by the COMPETE program (FCOMP-01-0124-
FEDER-015712 and FCOMP-01-0124-FEDER-010930, respectively)

1P. Rodrigues is with Centre of New Technologies for Medicine, Associ-
ation for Innovation and Biomedical Research on Light and Image Coimbra,
Portugal prodrigues at aibili.pt

2P. Serranho is with Mathematics Section, Department of Science and
Technology, Open University, Lisbon, Portugal and Institute of Biomedical
Research in Light and Image, Faculty of Medicine, University of Coimbra,
Coimbra, Portugal pserranho at uab.pt

3R. Bernardes is with Centre of New Technologies for Medicine, As-
sociation for Innovation and Biomedical Research on Light and Image
Coimbra, Portugal and Institute of Biomedical Research in Light and Image,
Faculty of Medicine, University of Coimbra, Coimbra, Portugal rcb at
aibili.pt

In this way, OCT volumetric scans from the human

ocular fundus (with data range between between 0 and 1)

of 512x1024x128 or 200x1024x200 voxels (x, y, and z
directions, respectively) are filtered taking the advantage of a

CUDA (compute unified device architecture) implementation

for GPU processing.

CUDA is a parallel computing architecture developed by

NVIDIA Corporation (Santa Clara, CA, USA). In CUDA C

the code runs on the host engine (with one or more CPUs)

and on one or more devices (with CUDA-enabled GPUs)

concurrently [1]. In turn, GPUs can run thousands of threads

in parallel, which makes them a very powerful platform for

computationally demanding algorithms that can be solved

using massive parallelism such as the one addressed in this

paper [1], [2].

The complex-diffusion process for denoising 2D images

was proposed by Gilboa et al. [3]. Salinas and Fernández

[4] optimized this process for 2D OCT scans (B-scans — xy
plane) of the ocular fundus and compared the results with

the nonlinear Perona-Malik diffusion filter [5]. However,

by restricting the diffusion to 2D, one is ignoring possibly

relevant information on adjacent B-scans.

In this work, the filter was extended from 2D to 3D [6]

and implemented in CUDA for computing performance.

II. NONLINEAR COMPLEX-DIFFUSION FILTER

The general nonlinear diffusion equation is

∂s

∂t
= ∇ · (D∇s) (1)

where ∇· and ∇ are the divergence and gradient operators,

respectively, D is the coefficient of diffusion, t denotes time

and s is the image/volume.

Through the discretization in time of (1) one gets

sn+1 = sn +∆t [∇ · (Dn
∇sn)] (2)

with ∆t a discrete time step and n the iteration number.

The complex diffusivity proposed by Gilboa et al. [3], [7]

for a ramp preserving process is defined as

D =
eiθ

1 +
(

Im(s)
κθ

)2 (3)

where Im(.) denotes the imaginary part, θ is a phase angle

close to zero and κ is a constant parameter that modulates

the spread of the coefficient of diffusion.

Additionally, a Gaussian filter (with 3x3x3 voxel filter

and a standard deviation σ = 1) is applied to sn before

computing the diffusivity [4].

34th Annual International Conference of the IEEE EMBS
San Diego, California USA, 28 August - 1 September, 2012

110978-1-4577-1787-1/12/$26.00 ©2012 IEEE

III. IMPLEMENTATION

The algorithm implementation can be divided in an envi-

ronment setup step, that only runs once, and two loop stages

that are called iteratively. The first loop stage filters Im(s)
(kernel K1) and stage two performs the remaining arithmetic

operations, namely the computation of ∇ · (D∇s) (kernels

K2-4) and the update of s (K5).

A. Setup Step

The setup overhead plays an important role for the per-

formance of the algorithm. Device and host memory are

allocated, thread block sizes and grid sizes for some of

the kernels are defined, configuration of cache sizes is per-

formed, and streams for efficient latency hiding are created.

The Gaussian filter is created and copied to the GPU’s

constant memory, a low latency read-only memory, to be

accessed from all threads in the grid.

In this step we also compute the SM (streaming multi-

processor) occupancy for the kernels K1-4 in order to find

flexible thread block dimensions and suitable grids.

Besides occupancy, other restrictions are checked as well,

namely the maximum grid sizes, maximum threads per block,

and total number of registers allocated per thread block.

These restrictions are checked in order to ensure that a given

SM has enough resources to be assigned to at least one thread

block at a time.

One should note that the number of registers and the

formulae for the occupancy varies in between CUDA archi-

tectures and are compilation dependent. These factors need

to be accounted for in order to achieve a flexible GPU-

independent process.

In addition, CUDA-enabled GPUs allow two configura-

tions in terms of L1 cache and shared memory sizes, which

is a low latency memory in the same on-chip location as

L1 and like L1 is shared by the threads within a thread

block. This allows one to switch between maximizing L1

or shared memory for each kernel [8]. Hence, we maximize

L1 cache for all kernels in order to reduce cache misses and

consequently time-wise expensive global memory fetches.

Since, in this process, none of the kernels make use of shared

memory.

B. Loop

One cannot guarantee that available global memory is

enough to cover the amount of memory required for the

loop stage. Consequently, in the setup stage, we have to

account for the need to partition the inputs and outputs to be

processed separately according to the size of the 3D imaging

data and the size of the GPU’s global memory.

Some GPUs provide support for the host to asyn-

chronously schedule copies between the host and the device,

as well as kernel calls and allow it to execute them simultane-

ously using CUDA streams — a single stream is a sequence

of instructions issued by the host that execute in order, yet

different streams may execute their instructions out of order,

with respect to one another, or concurrently [8].

At each loop stage the input and output volumes are parti-

tioned into a number of subsets of slices and the last subset

is zero-padded for performance. Each subset is processed by

a different stream and each stream is responsible to copy a

subset of slices to global memory, launch the kernels, and

copy the results back to host memory.

When scheduling asynchronous calls, one has to consider

that most GPUs do not support concurrent data transfers.

Thus, one must not schedule all calls of one stream followed

by all operations of another stream and so forth. This would

result in no optimization at all (in comparison with a single

stream process) and would most likely increase the process

overall execution time. Specifically, the host–device copy of

the second stream would not take place until the end of the

device–host copy transaction of the first stream. Nonetheless,

by scheduling the host–device copies and kernel calls for all

streams before all device–host copies, one can have kernel

execution and copies of different streams happening simul-

taneously accomplishing good kernel execution hiding. The

first device–host copy would have to wait for the last host–

device copy for GPUs without support for concurrent copies,

however, kernel execution time would still be partially or

even completely masked by copy latency.

Before the end of each loop stage, one has to synchronize

all streams, i.e., wait for the streams to have finished copying

their results to RAM.

C. Kernels

Optimizations were made that consist in using the

#pragma unroll directive and minimizing use of registers.

In each loop iteration different types of kernel are called.

We can classify them into two categories.

1) Spatial Convolution: Regarding the convolution kernel

K1, we created a 2D grid composed by 2D thread blocks

(x and y dimensions), where each tread computes an array

of pixels in z direction with length equal to the number of

slices in the subset. Grid and thread block dimensions are,

as mentioned before, computed in the setup stage based on

occupancy and resource restrictions.

In convolution operations data close to the boundaries

(e.g., voxels of the first slice) require manipulation so that

there is no data loss from iteration to iteration. To that intent

and to minimize warp divergence, we extended data volumes

through replication of the outermost voxels prior to kernel

launch.

2) Algorithm Specific: Each kernel (K2, K3,and K4)

computes ∇ · (D∇s) approximation in on direction (x, y,
and z, respectively) for the given subset.

3) Element-Wise Arithmetic: As to K5, it uses a 1D grid

with 1D thread blocks with hard-coded sizes It is responsible

for simple element-wise arithmetic operations over complex

volumes. Each thread computes and writes the results for the

indexes that are located in the thread’s index on the grid plus

multiples of the number of threads on the grid.

IV. RESULTS

Serranho et al. [9] proposed a way of generating synthetic

noise-free OCT volumes as well as OCT speckle noise to

111

(a) (b)

Fig. 1. S/MSE isolines for several (κ,N) pairs for (a) the 2D and (b)
the 3D filters. The crosses earmark the best pair for each method and the
triangles earmark the chosen parameters for the computation of the metrics
in Table I.

use as a system for evaluation of image processing methods.

These computer generated synthetic retinas will be used here

to evaluate the 3D despeckling filter and to compare it to the

2D process, thus providing the same ground truth for both

filters.

To filter the OCT scans of the ocular fundus, a θ = π/30
[3], a ∆t = 0.24 seconds for the 2D filter, and a ∆t = 0.16
seconds for the 3D filter were used [10]. As for κ and the

number of iterations N , we optimize them for both filters. As

such, the signal-to-mean-square-error (S/MSE) is computed

S/MSE = 10 log10

[

∑

x,y,z (s− µ)
2

∑

x,y,z (ŝ− s)
2

]

(4)

with ŝ the filtered volume and s the synthetic volume The

results are shown in Fig. 1 for the 2D and the 3D processes

using 8 synthetic retinas.

The maximum of the S/MSE does occur for (κ,N) of

(0.003, 100) for the 2D and (0.002, 50) for the 3D.

Additionally, other metrics were computed for comparison

between the original and the filtered versions with both

processes. These were the signal-to-noise ratio, computed

as

SNR =
µ

σ
(5)

with σ the standard deviation of the data; the effective

number of looks

ENL =

(

µh

σh

)2

(6)

where h stands for homogeneous region; the con-

trast-to-noise ratio

CNR = 10 log

µf − µr
√

σ2
f + σ2

r

 (7)

where f is a feature and r denotes background noise ref-

erence; and the mean structure similarity index [11], here

expanded to 3D,

MSSIM =
1

V

∑

x,y,z

SSIM(s, ŝ) (8)

(a) (b) (c)

(d) (e)

Fig. 2. (a) Original OCT B-scan, (b) OCT filtered with the 2D process
with κ = 0.003 and 100 iterations and (c) κ = 0.007 and 33 iterations,
and (d) OCT filtered with the 3D process with κ = 0.002 and 50 iterations
and (e) κ = 0.004 and 18 iterations. Enlarged details in a pseudo-color
space are show for ease of comparison.

with

SSIM(s1, s2) =
(2a1a2 + C1) (2d12 + C2)

(a21 + a22 + C1) (d21 + d22 + C2)
(9)

where V is the number of voxels, C1 = (0.01L)
2
, C2 =

(0.03L)
2
, and L is the maximum intensity scale value of the

data (e.g., 255 for 8-bit data). The values aj , dj and d12 are

112

TABLE I

COMPARISON TABLE BETWEEN SYNTHETIC NOISY OCT AND THE RESPECTIVE 2D AND 3D FILTERED VOLUMES.

κ N ∆t (s) t (s) S/MSE SNR ENL CNR MSSIM

Noisy - - - - 5.62±1.11 1.63±0.10 6.14± 0.39 4.68±1.57 0.39±0.02

2D Filtered
0.003 100 0.24 24.00 18.60±0.84 1.89±0.16 212.25± 66.94 7.08±1.69 0.96±0.00
0.007 33 0.24 7.92 18.09±0.85 1.87±0.15 142.75± 33.39 6.85±1.66 0.95±0.01

3D Filtered
0.002 50 0.16 8.00 17.99±0.97 1.88±0.16 322.84±140.17 6.97±1.67 0.96±0.01
0.004 18 0.16 2.88 17.77±0.98 1.88±0.16 240.21± 82.91 6.86±1.66 0.96±0.01

TABLE II

EXECUTION TIMES (IN SECONDS) FOR THE SINGLE-CORE

IMPLEMENTATION ON MATLAB AND THE CUDA C IMPLEMENTATION

ON A GPU, AS WELL AS THE AVERAGE PERFORMANCE IMPROVEMENT.

N iterations Single Core GTX 570 Speedup

1 17.007± 0.686 1.154±0.050 14.74

18 393.336±14.559 7.419±0.323 53.02

50 1074.277±39.791 19.421±0.853 55.32

given by

aj =
∑

k

g(k)wj(k)

dj =

√

∑

k

g(k) (wj(k)− aj)
2

d12 =
∑

k

g(k) (w1(k)− a1) (w2(k)− a2)

(10)

with j = 1, 2, where wj represents local 3D windows of the

volume sj in the neighborhood of the voxel (x, y, z) and g
is a 3D Gaussian weight function (of integral equal to one

and standard deviation 1.5 [11]).

Table I summarizes all metrics for the (κ,N) pairs that

result in the highest S/MSE and the pair (0.004, 18), for
the 3D algorithm, that was chosen to decrease the total

processing time without compromising the quality measures.

For the 2D filter the metrics were also computed for N = 50,
which corresponds to a similar total diffusion time t as

N = 18 in the 3D filter, and κ = 0.007 (the best possibility

for that N). Fig. 2 shows a B-scan from an actual OCT

filtered with the respective parameters.

ENL was computed in the vitreous and CNR was com-

puted in the retina with the vitreous as reference.

Detailed execution times and speedups for our implemen-

tation versus an optimized single-core Matlab version are

shown in Table II. These times were obtained from 10 runs

on each of the 8 OCTs, on a system with a 3.4 gigahertz

CPU and a GeForce GTX 570 GPU.

Through the optimization of fundamental parameters, it

was possible to achieve similar results at a fraction of the

number of iterations that, added to the CUDA implementa-

tion, rendered a speedup factor over 140.

V. DISCUSSION

Graphic processing units are now becoming widely avail-

able at most desktop computers. Besides traditional ap-

plications, e.g., computer graphics rendering, the massive

parallel power can be used for scientific computation and

is specifically tailored for naturally parallel processes as

convolutions, Fourier transforms and the like. In this work we

took advantage of this computing power to address the need

for the denoising of a medical imaging modality, the optical

coherence tomography, a coherent based imaging system.

Wave coherent based imaging suffers from a specific noise,

speckle noise, that renders a grainy appearance potentially

masking important information.

This initial approach will be tested on a recently proposed

adaptive filter [12].

ACKNOWLEDGMENT

The authors would like to thank Carl Zeiss Meditec, Inc.

(Dublin, CA, USA) and Dr. M. Horne for their support on

getting access to OCT data.

REFERENCES

[1] NVIDIA, CUDA C Best Pratices Guide, NVIDIA, May 2011.
[2] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips,

GPU computing, in Proceedings of the IEEE, vol. 96, no. 5, May
2008, pp. 879-899.

[3] G. Gilboa, N. Sochen, and Y. Zeevi, Image enhancement and denoising
by complex diffusion processes, IEEE Trans. Pattern Anal. Mach.
Intell., vol. 26, no. 8, pp. 1020-1036, August 2004.

[4] H. Salinas and D. Fernández, Comparison of pde-based nonlinear
diffusion approaches for image enhancement and denoising in optical
coherence tomography, IEEE Trans. Med. Imaging, vol. 26, no. 6, pp.
761-771, June 2007.

[5] P. Perona and J. Malik, Scale-space and edge detection using
anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., vol.
12, no. 7, pp. 629-639, Jul. 1990.

[6] C. Maduro, P. Serranho, T. Santos, P. Rodrigues, J. Cunha-Vaz, and
R. Bernardes, OCT Noise Despeckling Using 3D Nonlinear Complex
Diffusion Filter, in: Technologies for Medical Sciences, Lecture Notes
in Computational Vision and Biomechanics, R. Jorge and J. Tavares,
M. Barbosa, and A. Slade, Eds. Springer, 2012, vol. 1, pp. 141-157.

[7] G. Gilboa. Linear and Nonlinear Diffusions (Perona-
Malik). Accessed on May 2012. [Online]. Available:
http://visl.technion.ac.il/ gilboa/PDE-filt/diffusions.html

[8] NVIDIA, NVIDIA CUDA C Programming Guide, NVIDIA, June
2011.

[9] P. Serranho, C. Maduro, T. Santos, J. Cunha-Vaz, and R. Bernardes,
Synthetic OCT data for image processing performance testing, in Proc.
of 18th IEEE International Conference on Image Processing (ICIP),
2011, pp. 409-412.

[10] A. Araújo, S. Barbeiro, and P. Serranho, Stability of finite difference
schemes for compex diffusion processes, SIAM J. Numer. Anal. (in
press).

[11] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, Image quality
assessment: from error visibility to structural similarity, IEEE Trans.
Image Process., vol. 13, no. 4, pp. 1-14, April 2004.

[12] R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J.
Cunha-Vaz, Improved adaptive complex diffusion despeckling filter,
Opt. Express, vol. 18, no. 23, pp. 24 048-24 059, November 2010.

113

	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

