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Abstract—We propose a template-based method for 

correcting field inhomogeneity biases in magnetic resonance 

images (MRI) of the human brain.  At each algorithm iteration, 

the update of a B-spline deformation between an unbiased 

template image and the subject image is interleaved with 

estimation of a bias field based on the current template-to-

image alignment.  The bias field is modeled using a spatially 

smooth thin-plate spline interpolation based on ratios of local 

image patch intensity means between the deformed template 

and subject images. This is used to iteratively correct subject 

image intensities which are then used to improve the template-

to-image deformation. Experiments on synthetic and real data 

sets of images with and without Alzheimer’s disease suggest 

that the approach may have advantages over the popular N3 

technique for modeling bias fields and narrowing intensity 

ranges of gray matter, white matter, and cerebrospinal fluid.  

This bias field correction method has the potential to be more 

accurate than correction schemes based solely on intrinsic 

image properties or hypothetical image intensity distributions.  

I. INTRODUCTION 

The validity of structural brain MRI studies depends 

crucially on identifying anatomical correspondences across 

subjects. MRI images unfortunately contain slowly-varying 

field non-uniformities that complicate this task by 

introducing substantial variability in the intensities of pixels 

from the same tissue class. For this reason, a large literature 

is devoted to MRI non-uniformity correction. Two broad 

categories of approaches exist: intrinsic approaches use a 

priori assumptions of intensity variability within and 

between tissue classes to correct intensities based solely on 

the input image provided; relative approaches estimate the 

bias field by comparing intensities between corresponding 

locations in subject and reference images. The widely used 

N3 method [1] is an example of the intrinsic approach. N3 

performed well in a survey of six algorithms for non-

uniformity correction [2]. Yet methods such as this have 

potential drawbacks based on their assuming a discrete set of 

tissue classes and a corresponding intensity histogram 

exhibiting distinct sharp tissue intensity peaks.  Structures 

like the thalamus and putamen, for example, do not fit into 

this framework; their intensities typically lie between those 
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of cortical gray matter and subcortical white matter and may 

be inaccurately represented using this approach.  

 One example of the relative approach  estimates relative 

bias from ratios of intensities of voxels from like tissues in 

longitudinal (and therefore anatomically similar) image pairs 

[3]. In this method longitudinal images are corrected against 

each other to facilitate computation of brain change over 

time; there is not a notion of actual bias removal. Another 

relative method does aim for bias removal. It uses a B-spline 

deformation to identify correspondences between a subject 

image and a bias-minimized template. Intensity ratios 

between these two images are then taken to represent non-

uniformities at each subject voxel [4]. 

 Relative methods require good anatomical matching 

between images to ensure that the ratios of corresponding 

voxel intensities are valid estimates of differences or actual 

field nonuniformities. However, the field non-uniformity 

itself can create difficulties for accurate anatomical 

matching.  Furthermore, inter-individual differences in brain 

morphology make perfect anatomical matching impossible, 

and the inevitable tissue mismatches contribute to inaccurate 

non-uniformity estimates. Finally, image noise is a third 

component that confounds these estimates. Thus, estimating 

the non-uniformity field using voxel intensity ratios after 

completion of a deformation [4] could risk  errors due to 

both poor deformation estimation and unavoidable voxel-

level mismatches. 

 We propose a relative method that overcomes these 

problems by updating a smoothly-varying multiplicative 

nonuniformity field model, and correcting the subject image, 

at each iteration of a B-spline deformation between subject 

and template. The non-uniformity field is estimated by 

comparing the summary intensity statistics of extended 

image patches, rather than comparing intensities between 

individual voxels, to increase robustness against noise and 

anatomical mismatch. Non-uniformity field estimates are 

defined at the centroids of the image patches and 

interpolated across the brain using 3D thin-plate splines [5]. 

The resulting reciprocal field corrects the subject image 

intensities before the next iteration of the deformation.  This 

creates a “bootstrap” process in which an improved 

deformation yields an improved  non-uniformity field 

estimate, which then yields an improved deformation, and so 

on. 

 We hypothesize that such a model, based on comparisons 

of corresponding local regions, will be relatively insensitive 

both to local noise and anatomical mismatches. When used 

with a bias-free template, it should better represent and 

correct slowly varying nonuniformity fields in structural 

MRIs. 
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II. METHODS 

A. Overview of the method 

We assume that the subject image Y that we observe is 
the result of superimposing a smooth, slowly varying, 
multiplicative MRI non-uniformity field R onto a true, 
underlying subject image I, and that R can be modeled by a 
thin-plate spline field interpolated from relatively few 
discrete local measurements. Thus at each voxel x we have 

       Y(x) = R(x)I(x) + E,        (1)  

with E is zero-mean Gaussian noise. We use a deformed 
bias-free template image to approximate I and construct a 
function R which, when multiplied with our estimate of I, 
closely approximates Y. R is generated by taking the ratio of 
intensity summary measures between corresponding image 
patches in the deformed template and subject images—the 
patches consist of the image sub-volumes delineated by sets 
of adjacent B-spline control points as illustrated in Fig. 1. 
We correct the image at each iteration by multiplying the 
observed intensity Y(x)  by 1/R(x). 

 Prior to non-uniformity correction, we smooth the subject 
image slightly using a 3D Gaussian convolution filter (2.4 
mm FWHM), normalize both images to have the same global 
intensity means, and internally rescale the intensity range to 
0 – 500.  We then use an affine registration technique using 
cross correlation as a similarity measure and axis-parallel 
Brent’s method for optimization to linearly align the 
template to the subject.  Empirically, this step provides a 
rough alignment that enables accurate B-spline warping, 
even in the case of severe MRI nonuniformities. 

B. Cubic B-spline image warping 

We use cubic B-spline warping to deform the template to 
the subject [6]. We define a 3D control point grid over the 
template image and deform template image voxel locations 
by moving the control points. This deformation is performed 
in a multi-resolution control point hierarchy [7] with three 
degrees of control point separation: 24 mm, 12mm, and 
6mm. At each level in the hierarchy, we define a set of image 
patches, each of which cover the image sub-volume bounded 
by a set of adjacent control points on the template image.  
These image patches are deformed based on the control point 
motion and thus have a corresponding, deformed image 
patch defined on the subject image. 

C.  Computing the intensity ratios at locations defined by 

lattice points 

 During the warp, the control grid points of the cubic B-

spline warp provide a partitioning of the subject and 

template images into sub-volumes. Each sub-volume in the 

template corresponds to a deformed sub-volume in the 

subject. Using these image patches to tile each image gives 

paired regions in subject and template over which we 

estimate voxel intensity ratios. These ratios, assigned to 

centroids of the deformed patches, are the anchors for the 

thin-plate spline interpolation of the nonuniformity field. 

 For the intensity ratio at a given patch, we compute the 

intensity histogram of the patch in the template and the 

corresponding patch in the subject (see Fig.1, top and middle 

rows). For robustness against noise and tissue mismatch, we 

partition the intensity range of each patch into four 

subranges, with divisions at 12%, 40%, and 70% of the 

intensity maximum for the patch. Because the lowest 

subrange usually corresponds to CSF and is generally not 

informative for nonuniformity correction, it is discarded. 

Among the other subranges, the one that represents the 

largest number of voxels in the template and subject images 

together is considered the most representative subrange. The 

average intensity of the representative subrange is computed 

and the ratio of this average between template and subject is 

assigned to the centroid of the deformed subject patch (See 

Fig. 1).  

 

                

        
 

 
Figure 1.  Schematic overview of algorithm.   Top row: One patch on the 

template image (left) corresponds to one deformed patch on the subject 

image (right). Middle row: The voxel intensity histograms of the patches 

are divided into sub-ranges (vertical lines) and the mean of the most 

representative sub-range of each (to right of green divider) is calculated; 

this sub-range represents the white matter in both patches.  Bottom row: the 

ratio of these two means is used to define the multiplicative reciprocal 

nonuniformity ratios at discrete single points in the subject image, which 

are then interpolated over the rest of the volume using thin plate splines to 

form the inverse field model.  

 

 To complete the computation of the bias correction field, 

the template volume is tiled by sub-volumes of the kind 

shown on the top left in Fig. 1, and the object image is 

covered by their deformations. This leads to a set of intensity 

ratio estimates assigned to a discrete grid of locations within 

the subject image at the centroids of the deformed cubes. 
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The bias correction ratio field is computed by 3D thin-plate 

spline interpolation of those point estimates. Thin-plate 

spline interpolation uses cubic polynomials and the log 

function [5] to produce a second order differentiable field 

F(x) that matches the intensity ratios at the sampled 

locations. The intention is that the interpolated field will 

avoid local inaccuracies due to noise or tissue mismatch that 

might result from computing ratios at every voxel, even after 

smoothing as in [4], while being accurate to the overall non-

uniformity field because of robust estimation in each patch. 

An example of the reciprocal field is illustrated in Fig. 1c. 

 To summarize, when the template image is unbiased, the 

interpolated ratio field F(x) is an estimate of the reciprocal 

of the bias on the subject. Therefore multiplication of the 

subject image by F(x) at each voxel corrects the image. This 

is illustrated in Fig. 2. 

III. RESULTS 

In this section we present results from experiments with 
phantom and real images to demonstrate the effectiveness of 
the template-based non-uniformity correction method.  

A.  Correction of phantom data 

 We used the bias and noise-free MNI brain phantom 

(http://www.bic.mni.mcgill.ca/brainweb/selection_normal.ht

ml) [8] as the template for the phantom data experiments.   

To simulate a realistic MRI correction problem, a subject 

image was created by thin-plate spline deformation of the 

MNI phantom using manually-displaced landmarks. MRI 

field non-uniformities were synthesized by multiplying the 

subject image with a synthetic multiplicative sinusoidal 

nonuniformity field [2]. Finally we added Gaussian noise 

with a standard deviation of 3% of maximum white matter 

intensity, in accordance with the bias and noise model of (1). 

 We used our method to correct this subject image, taking 

the original MNI image as bias-free template (Fig. 2). The 

template-based method accurately captured the true 

reciprocal non-uniformity field, leading to a corrected image 

that lacked any highly visible non-uniformities. We also 

corrected the same image using N3 [1]. Fig. 3 shows the 

histograms of the images before and after correction by both 

methods.  The template-based method produced an output 

image whose intensity histogram peaks more closely 

resemble the original histogram than N3 did. In particular it 

has similar relative magnitudes of white and gray peaks, 

suggesting more faithful tissue class reconstruction. Because 

each histogram peak corresponds to one tissue class, this 

result suggests that the template-based method may do a 

superior job of producing output images that force all pixels 

within any given tissue class to have intensities within a 

narrow range, as would be expected in a bias-free image.  

 

 

 

 
Figure 2. Top row: MNI phantom brain (left) and distorted image used as 

subject (right). Middle row: Applied synthetic sinusoidal nonuniformity 

field (left) and resulting biased brain image (right). Bottom row: Computed 

reciprocal field used for correction (left) and corrected subject (right).  

 

          
 

           
Figure 3. Histograms of bias-free subject (upper left), subject with 

nonuniformities (upper right), biased subject corrected by template method 

(lower left) and N3 (lower right). The template method did a better job of 

restoring the histogram to that of the unbiased image. 

B. Correction of real image data 

 Next we used visual validity and statistical metrics to 

evaluate our method on real images for which the ground-

truth nonuniformity field is not known. We created a 

minimal deformation image (MDT) [9] based on 29 normal 

elderly T1-weighted brain MRI images. Then we used this to  

create a bias-free template by warping  the same 29 subjects 

to the MDT and averaging the resulting images, under the 

assumption that this would cancel out the nonuniformities 

present in the individual native images. All MPRAGE 

images were skullstripped and then linearly aligned to the 

MDT prior to warp, both for template creation and 

subsequent experiments in nonuniformity correction. 
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 Using the bias-free template we first applied our algorithm 

to an image with a clearly visible nonuniformity, evaluating 

the nonuniformity correction by visual inspection of the 

corrected image and the intensity histogram. Fig. 4 shows 

sample MRI slices and image intensity histograms before 

and after correction. Bias seen as darkening of the thalamus, 

internal capsule, striatum and putamen, and a bright rim near 

the left posterior cortex (Fig. 4, top left), are visibly 

corrected. The delineations of caudate, internal capsule and 

putamen are made clear as darkened gray and white are 

increased (Fig. 4, top right). Elevated gray intensities such as 

posterior occipital cortex are similarly reduced. The 

histograms in Fig. 4 (bottom row), show that gray and white 

mean intensities are multiplied upward and the tissues 

separated into distinct peaks. Thus the nonuniformity 

correction has reduced the variability of tissue intensity 

within these tissue classes. An expected distinct left “tail” for 

CSF now appears as well (Fig. 4, bottom right).  These 

features are all missing from the uncorrected image 

histogram. 

 Our second experiment used the method to correct 

nonuniformities from images in a group of cognitively 

normal elders (CN, N=23) and elders clinically diagnosed 

with Alzheimer’s disease (AD, N=23).  The AD group was 

expected to be more challenging due to greater 

morphological variability resulting from the disease.  We 

computed average coefficients of variation (CV) over each 

group for gray and white tissue types before and after 

correction. CV is defined as follows [10]: 

 

         CV =  / ,          (2)

           

where  and  are the relevant tissue standard deviation and 

mean, respectively. CV of image tissue is increased due to 

tissue nonuniformities; a reduction in CV is one measure of 

the quality of correction.  

 To compute the tissue class CV values, we segmented the 

images (before and after correction) using an EM-based 

MRF segmentation algorithm due to Rajapakse et al. [11] 

and used the resulting tissue masks to calculate means and 

standard deviations of voxel intensities within each class. 

Table I shows the CV values. As suggested  by the example 

image of Fig. 4, the CV changes were due principally to 

decreased gray variance.  Thus while white tissue CV values 

were already low due to high mean intensities, gray average 

CV was reduced by about 25% in each group due to local 

intensity increase or decrease as appropriate. Therefore the 

correction method reduced the intensity variability within 

tissue classes. 

TABLE I.  CV  TISSUE VALUES 

 Uncorrected  Corrected 

AD             G        0.403 0.306 

W 0.138 0.132 

CN             G                      0.422 0.303 

W 0.134 0.125 

 

            

    
Figure 4. Top row: MRI image before bias correction (left) and after 
(right). Subcortical structures are much clearer after correction. Bottom 
row: Intensity histograms before correction (left) and after (right). 

IV. CONCLUSION 

We have presented an effective and easy to use template-
based nonuniformity correction that assumes nothing except 
a smooth slowly varying nonuniformity field. It performed 
well on real data and better than N3 at restoring the intensity 
histogram in phantom data. It should prove a useful tool in 
nonuniformity correction of 3D structural MRI images.  
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